These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38550696)
21. Regulating Intermolecular Hydrogen Bonds in Organic Cathode Materials to Realize Ultra-stable, Flexible and Low-temperature Aqueous Zinc-organic Batteries. Ding C; Zhao Y; Yin W; Kang F; Huang W; Zhang Q Angew Chem Int Ed Engl; 2024 Oct; ():e202417988. PubMed ID: 39382562 [TBL] [Abstract][Full Text] [Related]
22. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
23. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108 [TBL] [Abstract][Full Text] [Related]
24. Fused Functional Organic Material with the Alternating Conjugation of Quinone-Pyrazine as Cathode for Aqueous Zinc Ion Batteries. Wang Y; Niu S; Gong S; Ju N; Jiang T; Wang Y; Zhang X; Sun Q; Sun HB Small Methods; 2024 Jul; 8(7):e2301301. PubMed ID: 38185796 [TBL] [Abstract][Full Text] [Related]
25. Molybdenum-optimized electronic structure and micromorphology to boost zinc ions storage properties of vanadium dioxide nanoflowers as an advanced cathode for aqueous zinc-ion batteries. Li Y; Chen J; Su L; Zhang X; Zheng Q; Huo Y; Lin D J Colloid Interface Sci; 2023 Dec; 652(Pt A):440-448. PubMed ID: 37604055 [TBL] [Abstract][Full Text] [Related]
26. Design Strategy of High Stability Vertically Aligned RGO@V Zhong X; Kong Z; Liu Q; Yang C; Chen Y; Qiu J; Zang L ACS Appl Mater Interfaces; 2023 Dec; 15(50):58333-58344. PubMed ID: 38052448 [TBL] [Abstract][Full Text] [Related]
27. Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Wang W; Tang Y; Liu J; Li H; Wang R; Zhang L; Liang F; Bai W; Zhang L; Zhang C Chem Sci; 2023 Aug; 14(34):9033-9040. PubMed ID: 37655030 [TBL] [Abstract][Full Text] [Related]
28. Oxygen-Deficient β-MnO Ding S; Zhang M; Qin R; Fang J; Ren H; Yi H; Liu L; Zhao W; Li Y; Yao L; Li S; Zhao Q; Pan F Nanomicro Lett; 2021 Aug; 13(1):173. PubMed ID: 34387758 [TBL] [Abstract][Full Text] [Related]
29. A Carbonyl Compound-Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries. Amin K; Meng Q; Ahmad A; Cheng M; Zhang M; Mao L; Lu K; Wei Z Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29226388 [TBL] [Abstract][Full Text] [Related]
30. Transition-metal ions intercalation chemistry enabled the manganese oxides-based cathode with enhanced capacity and cycle life for high-performance aqueous zinc-ion batteries. Zhao H; Wang L; Li M RSC Adv; 2024 Mar; 14(15):10191-10198. PubMed ID: 38544940 [TBL] [Abstract][Full Text] [Related]
31. Cesium-doped ammonium vanadium bronze nanosheets as high capacity aqueous zinc-ion battery cathodes with long cycle life and superb rate capability. Lei X; Du H; Li H; Zhang M; Zhang H; Jin Y; Zhang J Nanoscale; 2023 Nov; 15(46):18928-18938. PubMed ID: 37975826 [TBL] [Abstract][Full Text] [Related]
32. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries. Menart S; Lužanin O; Pirnat K; Pahovnik D; Moškon J; Dominko R ACS Appl Mater Interfaces; 2024 Apr; 16(13):16029-16039. PubMed ID: 38511931 [TBL] [Abstract][Full Text] [Related]
33. A High-Potential Bipolar Phenothiazine Derivative Cathode for Aqueous Zinc Batteries. Wang Y; Qiu S; He D; Guo J; Zhao M; Zheng C; Wang X; Wang C ChemSusChem; 2023 Oct; 16(19):e202300658. PubMed ID: 37491683 [TBL] [Abstract][Full Text] [Related]
34. Hierarchically Porous Metal-Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc-I Machhi HK; Sonigara KK; Bariya SN; Soni HP; Soni SS ACS Appl Mater Interfaces; 2021 May; 13(18):21426-21435. PubMed ID: 33938731 [TBL] [Abstract][Full Text] [Related]
35. A new zinc-ion battery cathode with high-performance: Loofah-like lanthanum manganese perovskite. Zhu T; Zheng K; Wang P; Cai X; Wang X; Gao D; Yu D; Chen C; Liu Y J Colloid Interface Sci; 2022 Mar; 610():796-804. PubMed ID: 34862045 [TBL] [Abstract][Full Text] [Related]
36. Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries. Yin C; Pan C; Pan Y; Hu J J Colloid Interface Sci; 2023 Jul; 642():513-522. PubMed ID: 37028158 [TBL] [Abstract][Full Text] [Related]
37. Insight into Anionic Discrepancies in Bipolar Poly(Thionine) Organic Cathodes for Aqueous Zinc Ion Batteries. Zhan S; Wang C; Zhong L; Zhao L; Yang X; Guo AXY; Xiong W; Cheng L; Li R; Tang Z; Cao SC; Zhi C; Lv Lyu H Small; 2024 Nov; 20(45):e2402767. PubMed ID: 39086056 [TBL] [Abstract][Full Text] [Related]
38. Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K Li L; Liu S; Liu W; Ba D; Liu W; Gui Q; Chen Y; Hu Z; Li Y; Liu J Nanomicro Lett; 2021 Jan; 13(1):34. PubMed ID: 34138229 [TBL] [Abstract][Full Text] [Related]
39. Van der Waals Interaction-Driven Self-Assembly of V Liu H; Jiang L; Cao B; Du H; Lu H; Ma Y; Wang H; Guo H; Huang Q; Xu B; Guo S ACS Nano; 2022 Sep; 16(9):14539-14548. PubMed ID: 36067370 [TBL] [Abstract][Full Text] [Related]
40. Anhydride-Based Compound with Tunable Redox Properties as Advanced Organic Cathodes for High-Performance Aqueous Zinc-Ion Batteries. Wang J; Lv H; Huang L; Li J; Xie H; Wang G; Gu T ACS Appl Mater Interfaces; 2023 Oct; 15(42):49447-49457. PubMed ID: 37846901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]