BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38550701)

  • 1. Rational design of a cyclohexanone dehydrogenase for enhanced α,β-desaturation and substrate specificity.
    Singh W; Brown NL; McCue HV; Marriott SR; Wilson RC; Perry J; Turkenburg JP; Dubey KD; Prior SH; Carnell AJ; Taylor EJ; Black GW
    Chem Sci; 2024 Mar; 15(13):4969-4980. PubMed ID: 38550701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Mutation of the Native Amine Dehydrogenase MATOUAmDH2.
    Bennett M; Ducrot L; Vergne-Vaxelaire C; Grogan G
    Chembiochem; 2022 May; 23(10):e202200136. PubMed ID: 35349204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo, High-Throughput Selection of Thermostable Cyclohexanone Monooxygenase (CHMO).
    Maxel S; Zhang L; King E; Acosta AP; Luo R; Li H
    Catalysts; 2020 Aug; 10(8):. PubMed ID: 37637965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.
    Engst S; Vock P; Wang M; Kim JJ; Ghisla S
    Biochemistry; 1999 Jan; 38(1):257-67. PubMed ID: 9890906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor.
    Mirza IA; Yachnin BJ; Wang S; Grosse S; Bergeron H; Imura A; Iwaki H; Hasegawa Y; Lau PC; Berghuis AM
    J Am Chem Soc; 2009 Jul; 131(25):8848-54. PubMed ID: 19385644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting Cofactor Versatility to Convert a FAD-Dependent Baeyer-Villiger Monooxygenase into a Ketoreductase.
    Xu J; Peng Y; Wang Z; Hu Y; Fan J; Zheng H; Lin X; Wu Q
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14499-14503. PubMed ID: 31423719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism.
    Rohman A; van Oosterwijk N; Thunnissen AM; Dijkstra BW
    J Biol Chem; 2013 Dec; 288(49):35559-68. PubMed ID: 24165124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation.
    Yachnin BJ; Sprules T; McEvoy MB; Lau PC; Berghuis AM
    J Am Chem Soc; 2012 May; 134(18):7788-95. PubMed ID: 22506764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules.
    Liu Y; Han SJ; Liu WB; Stoltz BM
    Acc Chem Res; 2015 Mar; 48(3):740-51. PubMed ID: 25715056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for substrate specificity of methylsuccinyl-CoA dehydrogenase, an unusual member of the acyl-CoA dehydrogenase family.
    Schwander T; McLean R; Zarzycki J; Erb TJ
    J Biol Chem; 2018 Feb; 293(5):1702-1712. PubMed ID: 29275330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of the flavin containing enzyme dihydroorotate dehydrogenase A from Lactococcus lactis.
    Rowland P; Nielsen FS; Jensen KF; Larsen S
    Structure; 1997 Feb; 5(2):239-52. PubMed ID: 9032071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of 3-ketosteroid-∆
    Mao S; Wang JW; Liu F; Zhu Z; Gao D; Guo Q; Xu P; Ma Z; Hou Y; Cheng X; Sun D; Lu F; Qin HM
    Microb Cell Fact; 2018 Sep; 17(1):141. PubMed ID: 30200975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design.
    Roth M; Jeltsch A
    Nucleic Acids Res; 2001 Aug; 29(15):3137-44. PubMed ID: 11470870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
    Mthethwa KS; Kassier K; Engel J; Kara S; Smit MS; Opperman DJ
    Enzyme Microb Technol; 2017 Nov; 106():11-17. PubMed ID: 28859804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reengineered carbonyl reductase for reducing methyl-substituted cyclohexanones.
    Jakoblinnert A; Wachtmeister J; Schukur L; Shivange AV; Bocola M; Ansorge-Schumacher MB; Schwaneberg U
    Protein Eng Des Sel; 2013 Apr; 26(4):291-8. PubMed ID: 23355692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical Desaturation and Epoxidation with Oxygen by Sequential Flavin Catalysis.
    Walter A; Eisenreich W; Storch G
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310634. PubMed ID: 37635656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate.
    Kim JJ; Wang M; Paschke R
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7523-7. PubMed ID: 8356049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family.
    Ghosh D; Weeks CM; Grochulski P; Duax WL; Erman M; Rimsay RL; Orr JC
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10064-8. PubMed ID: 1946424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.