These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 38551370)

  • 1. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments.
    Demin KA; Prazdnova EV; Minkina TM; Gorovtsov AV
    Appl Environ Microbiol; 2024 Apr; 90(4):e0139023. PubMed ID: 38551370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms.
    Hausmann B; Knorr KH; Schreck K; Tringe SG; Glavina Del Rio T; Loy A; Pester M
    ISME J; 2016 Oct; 10(10):2365-75. PubMed ID: 27015005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland.
    Pester M; Bittner N; Deevong P; Wagner M; Loy A
    ISME J; 2010 Dec; 4(12):1591-602. PubMed ID: 20535221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Detection of SRPs in injection water of Shenli Oil Field by FISH].
    Zeng JH; Wu XL; Zhao GF; Qian Y
    Huan Jing Ke Xue; 2006 May; 27(5):972-6. PubMed ID: 16850843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages.
    Loy A; Küsel K; Lehner A; Drake HL; Wagner M
    Appl Environ Microbiol; 2004 Dec; 70(12):6998-7009. PubMed ID: 15574893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High unique diversity of sulfate-reducing prokaryotes characterized in a depth gradient in an acidic fen.
    Schmalenberger A; Drake HL; Küsel K
    Environ Microbiol; 2007 May; 9(5):1317-28. PubMed ID: 17472643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hydropower dam construction on sulfur distribution and sulfate-reducing prokaryotes assemblage.
    Shi J; Zhang B; Wang Y; Fu J
    Sci Total Environ; 2020 Feb; 705():135819. PubMed ID: 31972948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity and biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits.
    Zhu X; Chen L; Pan H; Wang L; Zhang X; Wang D
    Environ Sci Pollut Res Int; 2022 May; 29(21):31110-31120. PubMed ID: 35001286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons.
    Brewer TE; Aronson EL; Arogyaswamy K; Billings SA; Botthoff JK; Campbell AN; Dove NC; Fairbanks D; Gallery RE; Hart SC; Kaye J; King G; Logan G; Lohse KA; Maltz MR; Mayorga E; O'Neill C; Owens SM; Packman A; Pett-Ridge J; Plante AF; Richter DD; Silver WL; Yang WH; Fierer N
    mBio; 2019 Oct; 10(5):. PubMed ID: 31575762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity bioassays for ecological risk assessment in arid and semiarid ecosystems.
    Markwiese JT; Ryti RT; Hooten MM; Michael DI; Hlohowskyj I
    Rev Environ Contam Toxicol; 2001; 168():43-98. PubMed ID: 12882227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative metabolic modeling of multiple sulfate-reducing prokaryotes reveals versatile energy conservation mechanisms.
    Tang WT; Hao TW; Chen GH
    Biotechnol Bioeng; 2021 Jul; 118(7):2676-2693. PubMed ID: 33844295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Analysis of Family UBA6911 (Group 18
    Yadav A; Borrelli JC; Elshahed MS; Youssef NH
    Appl Environ Microbiol; 2021 Aug; 87(17):e0094721. PubMed ID: 34160232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and Environmental Drivers of Fungal Denitrifiers in Global Soils.
    Bösch Y; Pold G; Saghaï A; Karlsson M; Jones CM; Hallin S
    Microbiol Spectr; 2023 Jun; 11(3):e0006123. PubMed ID: 37222601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and Activity of Sulfate-Reducing Prokaryotes in Kamchatka Hot Springs.
    Frolov EN; Gololobova AV; Klyukina AA; Bonch-Osmolovskaya EA; Pimenov NV; Chernyh NA; Merkel AY
    Microorganisms; 2021 Oct; 9(10):. PubMed ID: 34683394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial ecology of the deep terrestrial subsurface.
    Beaver RC; Neufeld JD
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38780093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Transcriptional Activity at Zero Growth of a Cosmopolitan Rare Biosphere Member.
    Hausmann B; Pelikan C; Rattei T; Loy A; Pester M
    mBio; 2019 Feb; 10(1):. PubMed ID: 30755506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling.
    Bao P; Li GX; Sun GX; Xu YY; Meharg AA; Zhu YG
    Sci Total Environ; 2018 Feb; 613-614():398-408. PubMed ID: 28918271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of sulfate reducers with the other oil bacterial groups in Diyarbakır oil fields.
    Tüccar T; Ilhan-Sungur E; Abbas B; Muyzer G
    Anaerobe; 2019 Oct; 59():19-31. PubMed ID: 31029749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium".
    Zecchin S; Mueller RC; Seifert J; Stingl U; Anantharaman K; von Bergen M; Cavalca L; Pester M
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247059
    [No Abstract]   [Full Text] [Related]  

  • 20. Orange leads to black: evaluating the efficacy of co-culturing iron-oxidizing and sulfate-reducing bacteria to discern ecological relationships.
    Brooks CN; Field EK
    Environ Microbiol Rep; 2021 Jun; 13(3):317-324. PubMed ID: 33554452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.