These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 38551683)

  • 1. How plants respond to heavy metal contamination: a narrative review of proteomic studies and phytoremediation applications.
    Al-Obaidi JR; Jamaludin AA; Rahman NA; Ahmad-Kamil EI
    Planta; 2024 Mar; 259(5):103. PubMed ID: 38551683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources.
    Yadav R; Singh G; Santal AR; Singh NP
    J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of heavy metals--concepts and applications.
    Ali H; Khan E; Sajad MA
    Chemosphere; 2013 May; 91(7):869-81. PubMed ID: 23466085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phytoremediation of heavy metal contamination and related molecular mechanisms in plants].
    Wang P; Chao D
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):426-435. PubMed ID: 32237537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems.
    Nguyen TQ; Sesin V; Kisiala A; Emery RJN
    Environ Toxicol Chem; 2021 Jan; 40(1):7-22. PubMed ID: 33074580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
    Jing YD; He ZL; Yang XE
    J Zhejiang Univ Sci B; 2007 Mar; 8(3):192-207. PubMed ID: 17323432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity.
    Gupta R; Khan F; Alqahtani FM; Hashem M; Ahmad F
    Appl Biochem Biotechnol; 2024 May; 196(5):2928-2956. PubMed ID: 37097400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi.
    Zheng J; Xie X; Li C; Wang H; Yu Y; Huang B
    Int J Phytoremediation; 2023; 25(12):1596-1613. PubMed ID: 36786203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review.
    Rai KK; Pandey N; Meena RP; Rai SP
    Ecotoxicol Environ Saf; 2021 Jan; 208():111750. PubMed ID: 33396075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - A review.
    Oyuela Leguizamo MA; Fernández Gómez WD; Sarmiento MCG
    Chemosphere; 2017 Feb; 168():1230-1247. PubMed ID: 27823781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
    Rascio N; Navari-Izzo F
    Plant Sci; 2011 Feb; 180(2):169-81. PubMed ID: 21421358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals.
    Skuza L; Szućko-Kociuba I; Filip E; Bożek I
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies.
    Rai GK; Bhat BA; Mushtaq M; Tariq L; Rai PK; Basu U; Dar AA; Islam ST; Dar TUH; Bhat JA
    Physiol Plant; 2021 Sep; 173(1):287-304. PubMed ID: 33864701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation.
    Ghuge SA; Nikalje GC; Kadam US; Suprasanna P; Hong JC
    J Hazard Mater; 2023 May; 450():131039. PubMed ID: 36867909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.