These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 38551683)

  • 21. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.
    Sharma S; Singh B; Manchanda VK
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.
    Mahar A; Wang P; Ali A; Awasthi MK; Lahori AH; Wang Q; Li R; Zhang Z
    Ecotoxicol Environ Saf; 2016 Apr; 126():111-121. PubMed ID: 26741880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promising strategies of circular bioeconomy using heavy metal phytoremediated plants - A critical review.
    Iyyappan J; Baskar G; Deepanraj B; Anand AV; Saravanan R; Awasthi MK
    Chemosphere; 2023 Feb; 313():137097. PubMed ID: 36334740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review on bioremediation approach for heavy metal detoxification and accumulation in plants.
    Yaashikaa PR; Kumar PS; Jeevanantham S; Saravanan R
    Environ Pollut; 2022 May; 301():119035. PubMed ID: 35196562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Cd and Pb on soil microbial community structure and activities.
    Khan S; Hesham Ael-L; Qiao M; Rehman S; He JZ
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):288-96. PubMed ID: 19333640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses.
    Raklami A; Meddich A; Oufdou K; Baslam M
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative zinc tolerance and phytoremediation potential of four biofuel plant species.
    Amin H; Ahmed Arain B; Jahangir TM; Abbasi AR; Abbasi MS; Amin F
    Int J Phytoremediation; 2023; 25(8):1014-1028. PubMed ID: 36134746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fungal endophytes and their interactions with plants in phytoremediation: A review.
    Deng Z; Cao L
    Chemosphere; 2017 Feb; 168():1100-1106. PubMed ID: 28029384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives.
    Sarwar N; Imran M; Shaheen MR; Ishaque W; Kamran MA; Matloob A; Rehim A; Hussain S
    Chemosphere; 2017 Mar; 171():710-721. PubMed ID: 28061428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Heavy Metals on Stomata in Plants: A Review.
    Guo Z; Gao Y; Yuan X; Yuan M; Huang L; Wang S; Liu C; Duan C
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation.
    Gulzar ABM; Mazumder PB
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of heavy metal challenge in plants: from roots to shoots.
    DalCorso G; Manara A; Furini A
    Metallomics; 2013 Sep; 5(9):1117-32. PubMed ID: 23739766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives.
    Guarino C; Conte B; Spada V; Arena S; Sciarrillo R; Scaloni A
    Environ Sci Technol; 2014 Oct; 48(19):11487-96. PubMed ID: 25203592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of mi RNA in Phytoremediation of Heavy Metals and Metal Induced Stress Alleviation.
    Talukder P; Saha A; Roy S; Ghosh G; Roy DD; Barua S
    Appl Biochem Biotechnol; 2023 Sep; 195(9):5712-5729. PubMed ID: 37389725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.