BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 38551889)

  • 1. Immunologic tumor microenvironment modulators for turning cold tumors hot.
    Khosravi GR; Mostafavi S; Bastan S; Ebrahimi N; Gharibvand RS; Eskandari N
    Cancer Commun (Lond); 2024 May; 44(5):521-553. PubMed ID: 38551889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lighting Up the Fire in the Microenvironment of Cold Tumors: A Major Challenge to Improve Cancer Immunotherapy.
    Benoit A; Vogin G; Duhem C; Berchem G; Janji B
    Cells; 2023 Jul; 12(13):. PubMed ID: 37443821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade.
    Genova C; Dellepiane C; Carrega P; Sommariva S; Ferlazzo G; Pronzato P; Gangemi R; Filaci G; Coco S; Croce M
    Front Immunol; 2021; 12():799455. PubMed ID: 35069581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy.
    Zhang MR; Fang LL; Guo Y; Wang Q; Li YJ; Sun HF; Xie SY; Liang Y
    Int J Nanomedicine; 2024; 19():3387-3404. PubMed ID: 38617801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
    Xing R; Gao J; Cui Q; Wang Q
    Front Immunol; 2021; 12():783236. PubMed ID: 34899747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next generation of immune checkpoint inhibitors and beyond.
    Marin-Acevedo JA; Kimbrough EO; Lou Y
    J Hematol Oncol; 2021 Mar; 14(1):45. PubMed ID: 33741032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives.
    Majidpoor J; Mortezaee K
    Clin Immunol; 2021 May; 226():108707. PubMed ID: 33662590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-angiogenic Agents in Combination With Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment.
    Song Y; Fu Y; Xie Q; Zhu B; Wang J; Zhang B
    Front Immunol; 2020; 11():1956. PubMed ID: 32983126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming cold tumors: a combination strategy of immune checkpoint inhibitors.
    Ouyang P; Wang L; Wu J; Tian Y; Chen C; Li D; Yao Z; Chen R; Xiang G; Gong J; Bao Z
    Front Immunol; 2024; 15():1344272. PubMed ID: 38545114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turning tumors from cold to inflamed to improve immunotherapy response.
    Gerard CL; Delyon J; Wicky A; Homicsko K; Cuendet MA; Michielin O
    Cancer Treat Rev; 2021 Dec; 101():102227. PubMed ID: 34656019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of up-and-coming immune checkpoint inhibitors for pancreatic cancer.
    Mahadevia H; Uson Junior PLS; Wang J; Borad M; Babiker H
    Expert Opin Pharmacother; 2024; 25(1):79-90. PubMed ID: 38193476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.
    Hou A; Hou K; Huang Q; Lei Y; Chen W
    Front Immunol; 2020; 11():783. PubMed ID: 32508809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding and overcoming resistance to immunotherapy in genitourinary cancers.
    Evans ST; Jani Y; Jansen CS; Yildirim A; Kalemoglu E; Bilen MA
    Cancer Biol Ther; 2024 Dec; 25(1):2342599. PubMed ID: 38629578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations of HER2 Mutation With Immune-Related Features and Immunotherapy Outcomes in Solid Tumors.
    Wang D; Chen X; Du Y; Li X; Ying L; Lu Y; Shen B; Gao X; Yi X; Xia X; Sui X; Shu Y
    Front Immunol; 2022; 13():799988. PubMed ID: 35281032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and strategies of immunotherapy resistance in colorectal cancer.
    Shan J; Han D; Shen C; Lei Q; Zhang Y
    Front Immunol; 2022; 13():1016646. PubMed ID: 36238278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy.
    Jin Z; Sun X; Wang Y; Zhou C; Yang H; Zhou S
    Front Immunol; 2022; 13():1018903. PubMed ID: 36300110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities.
    Hack SP; Zhu AX; Wang Y
    Front Immunol; 2020; 11():598877. PubMed ID: 33250900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.