These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38551935)

  • 1. Fine-tuning TrailMap: The utility of transfer learning to improve the performance of deep learning in axon segmentation of light-sheet microscopy images.
    Oostrom M; Muniak MA; Eichler West RM; Akers S; Pande P; Obiri M; Wang W; Bowyer K; Wu Z; Bramer LM; Mao T; Webb-Robertson BJM
    PLoS One; 2024; 19(3):e0293856. PubMed ID: 38551935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-tuning TrailMap: The utility of transfer learning to improve the performance of deep learning in axon segmentation of light-sheet microscopy images.
    Oostrom M; Muniak MA; Eichler West RM; Akers S; Pande P; Obiri M; Wang W; Bowyer K; Wu Z; Bramer LM; Mao T; Webb-Robertson BJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network.
    Friedmann D; Pun A; Adams EL; Lui JH; Kebschull JM; Grutzner SM; Castagnola C; Tessier-Lavigne M; Luo L
    Proc Natl Acad Sci U S A; 2020 May; 117(20):11068-11075. PubMed ID: 32358193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transfer learning approach to few-shot segmentation of novel white matter tracts.
    Lu Q; Liu W; Zhuo Z; Li Y; Duan Y; Yu P; Qu L; Ye C; Liu Y
    Med Image Anal; 2022 Jul; 79():102454. PubMed ID: 35468555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model.
    Sanford TH; Zhang L; Harmon SA; Sackett J; Yang D; Roth H; Xu Z; Kesani D; Mehralivand S; Baroni RH; Barrett T; Girometti R; Oto A; Purysko AS; Xu S; Pinto PA; Xu D; Wood BJ; Choyke PL; Turkbey B
    AJR Am J Roentgenol; 2020 Dec; 215(6):1403-1410. PubMed ID: 33052737
    [No Abstract]   [Full Text] [Related]  

  • 6. Morphometric analysis of peripheral myelinated nerve fibers through deep learning.
    Moiseev D; Hu B; Li J
    J Peripher Nerv Syst; 2019 Mar; 24(1):87-93. PubMed ID: 30488523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies.
    Wahlig SG; Nedelec P; Weiss DA; Rudie JD; Sugrue LP; Rauschecker AM
    Front Neurosci; 2023; 17():1188336. PubMed ID: 37965219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AxonDeep: Automated Optic Nerve Axon Segmentation in Mice With Deep Learning.
    Deng W; Hedberg-Buenz A; Soukup DA; Taghizadeh S; Wang K; Anderson MG; Garvin MK
    Transl Vis Sci Technol; 2021 Dec; 10(14):22. PubMed ID: 34932117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional prostate CT segmentation through fine-tuning of a pre-trained neural network using no reference labeling.
    Caughlin K; Shahedi M; Shoag JE; Barbieri C; Margolis D; Fei B
    Proc SPIE Int Soc Opt Eng; 2021 Feb; 11598():. PubMed ID: 35755405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET.
    Liu H; Wu J; Lu W; Onofrey JA; Liu YH; Liu C
    Phys Med Biol; 2020 Sep; 65(18):185006. PubMed ID: 32924973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification.
    Hwang J; Lustig N; Jung M; Lee JH
    Heliyon; 2023 Jul; 9(7):e18086. PubMed ID: 37519689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI.
    Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S
    J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Model for Chest Radiographs: Using Local Data to Enhance Performance.
    Mohn SF; Law M; Koleva M; Lee B; Berg A; Murray N; Nicolaou S; Parker WA
    Can Assoc Radiol J; 2023 Aug; 74(3):548-556. PubMed ID: 36542834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement-oriented deep-learning workflow for improved segmentation of myelin and axons in high-resolution images of human cerebral white matter.
    Janjic P; Petrovski K; Dolgoski B; Smiley J; Zdravkovski P; Pavlovski G; Jakjovski Z; Davceva N; Poposka V; Stankov A; Rosoklija G; Petrushevska G; Kocarev L; Dwork AJ
    J Neurosci Methods; 2019 Oct; 326():108373. PubMed ID: 31377177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer learning for auto-segmentation of 17 organs-at-risk in the head and neck: Bridging the gap between institutional and public datasets.
    Clark B; Hardcastle N; Johnston LA; Korte J
    Med Phys; 2024 Jul; 51(7):4767-4777. PubMed ID: 38376454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.