BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38551996)

  • 1. Inaugural Review Prize 2023: The exercise hyperpnoea dilemma: A 21st-century perspective.
    Welch JF; Mitchell GS
    Exp Physiol; 2024 Mar; ():. PubMed ID: 38551996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term modulation of the exercise ventilatory response in goats.
    Martin PA; Mitchell GS
    J Physiol; 1993 Oct; 470():601-17. PubMed ID: 8308746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.
    Miyamoto T; Manabe K; Ueda S; Nakahara H
    Exp Physiol; 2018 May; 103(5):748-760. PubMed ID: 29509982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are type III-IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans?
    Dempsey JA; Blain GM; Amann M
    J Physiol; 2014 Feb; 592(3):463-74. PubMed ID: 24000177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of exercise hyperpnoea: Contributions from thin-fibre skeletal muscle afferents.
    Bruce RM; Jolley C; White MJ
    Exp Physiol; 2019 Nov; 104(11):1605-1621. PubMed ID: 31429500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of ventilation during submaximal exercise: a brief review.
    Powers SK; Beadle RE
    J Sports Sci; 1985; 3(1):51-65. PubMed ID: 3937905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine D1 receptors control exercise hyperpnoea in mice.
    Iwase M; Izumizaki M; Tsuchiya N; Homma I
    Exp Physiol; 2013 Feb; 98(2):491-500. PubMed ID: 23024370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hyperpnoea of exercise in health: Respiratory influences on neurovascular control.
    Sheel AW; Taylor JL; Katayama K
    Exp Physiol; 2020 Dec; 105(12):1984-1989. PubMed ID: 32034952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layers of exercise hyperpnea: modulation and plasticity.
    Mitchell GS; Babb TG
    Respir Physiol Neurobiol; 2006 Apr; 151(2-3):251-66. PubMed ID: 16530024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopaminergic modulation of exercise hyperpnoea via D(2) receptors in mice.
    Tsuchiya N; Iwase M; Izumizaki M; Homma I
    Exp Physiol; 2012 Feb; 97(2):228-38. PubMed ID: 22041981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway response during exercise and hyperpnoea in non-asthmatic and asthmatic individuals.
    Gotshall RW
    Sports Med; 2006; 36(6):513-27. PubMed ID: 16737344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of exercise duration on the fast component of exercise hyperpnoea at work rates below the first ventilatory threshold.
    Koehle M; Duffin J
    Eur J Appl Physiol Occup Physiol; 1996; 74(6):548-52. PubMed ID: 8971497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the exercise hyperpnoea in humans: a modeling perspective.
    Ward SA
    Respir Physiol; 2000 Sep; 122(2-3):149-66. PubMed ID: 10967341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of sudden airway hypercapnia on the initiation of exercise hyperpnoea in man.
    Ward SA
    J Physiol; 1979 Nov; 296():203-14. PubMed ID: 529086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory control at exercise onset: an integrated systems perspective.
    Bell HJ
    Respir Physiol Neurobiol; 2006 May; 152(1):1-15. PubMed ID: 16531126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the performance of linear resistance and ultrasonic pneumotachometers at rest and during lobeline-induced hyperpnoea.
    Kästner SB; Marlin DJ; Roberts CA; Auer JA; Lekeux P
    Res Vet Sci; 2000 Apr; 68(2):153-9. PubMed ID: 10756133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea.
    Brown PI; Sharpe GR; Johnson MA
    Eur J Appl Physiol; 2008 Sep; 104(1):111-7. PubMed ID: 18560878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential control of respiratory frequency and tidal volume during exercise.
    Nicolò A; Sacchetti M
    Eur J Appl Physiol; 2023 Feb; 123(2):215-242. PubMed ID: 36326866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory frequency and tidal volume during exercise: differential control and unbalanced interdependence.
    Nicolò A; Girardi M; Bazzucchi I; Felici F; Sacchetti M
    Physiol Rep; 2018 Nov; 6(21):e13908. PubMed ID: 30393984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilatory control during exercise with increased respiratory dead space in goats.
    Mitchell GS
    J Appl Physiol (1985); 1990 Aug; 69(2):718-27. PubMed ID: 2228882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.