These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38552025)

  • 1. Direct HCN synthesis via plasma-assisted conversion of methane and nitrogen.
    Kamarinopoulou NS; Wittreich GR; Vlachos DG
    Sci Adv; 2024 Mar; 10(13):eadl4246. PubMed ID: 38552025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde and ammonia.
    Schlesinger G; Miller SL
    J Mol Evol; 1983; 19(5):383-90. PubMed ID: 6315963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds.
    Miller SL; Schlesinger G
    Adv Space Res; 1983; 3(9):47-53. PubMed ID: 11542461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron induced reactions in condensed mixtures of methane and ammonia.
    Kundu S; Prabhudesai VS; Krishnakumar E
    Phys Chem Chem Phys; 2017 Sep; 19(37):25723-25733. PubMed ID: 28913527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon and energy yields in prebiotic syntheses using atmospheres containing CH4, CO and CO2.
    Miller SL; Schlesinger G
    Orig Life; 1984; 14(1-4):83-90. PubMed ID: 6087242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HCN formation under electron impact: experimental studies and application to Neptune's atmosphere.
    Gazeau MC; Cottin H; Guez L; Bruston P; Raulin F
    Adv Space Res; 1997; 19(7):1135-44. PubMed ID: 11541342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and Modeling High-Pressure Study of Ammonia-Methane Oxidation in a Flow Reactor.
    García-Ruiz P; Salas I; Casanova E; Bilbao R; Alzueta MU
    Energy Fuels; 2024 Jan; 38(2):1399-1415. PubMed ID: 38264622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-Triggered CH
    Yi Y; Zhang R; Wang L; Yan J; Zhang J; Guo H
    ACS Omega; 2017 Dec; 2(12):9199-9210. PubMed ID: 31457435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric discharge synthesis of HCN in simulated Jovian atmospheres.
    Stribling R; Miller SL
    Icarus; 1987; 72():48-52. PubMed ID: 11542095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical Challenges and Prospects in Sustainable Plasma Catalytic Ammonia Production from Methane and Nitrogen.
    M Nguyen H; Omidkar A; Song H
    Chempluschem; 2023 Jul; 88(7):e202300129. PubMed ID: 37160701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonoxidative Coupling of Methane over Ceria-Supported Single-Atom Pt Catalysts in DBD Plasma.
    Liu L; Das S; Zhang Z; Kawi S
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5363-5375. PubMed ID: 35072474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CH
    Meyer M; Kerketta S; Hartman R; Kushner MJ
    J Phys Chem A; 2024 Apr; 128(13):2656-2671. PubMed ID: 38571444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Study of the Reactions of Methane and Ethane with Electronically Excited N2(A(3)Σu(+)).
    Sharipov AS; Loukhovitski BI; Starik AM
    J Phys Chem A; 2016 Jun; 120(25):4349-59. PubMed ID: 27266481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of [11C]HCN production and no-carrier-added [1-11C]amino acid synthesis.
    Iwata R; Ido T; Takahashi T; Nakanishi H; Iida S
    Int J Rad Appl Instrum A; 1987; 38(2):97-102. PubMed ID: 3032866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-molecule condensation reactions: a mechanism for organic synthesis in ionized reducing atmospheres.
    Meot-Ner M
    Orig Life; 1978 Dec; 9(2):115-31. PubMed ID: 752132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of CO
    Mazankova V; Torokova L; Krcma F; Mason NJ; Matejcik S
    Orig Life Evol Biosph; 2016 Nov; 46(4):499-506. PubMed ID: 27068154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Mechanism of Liquid-Metal Indium for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons.
    Nishikawa Y; Ohtsuka Y; Ogihara H; Rattanawan R; Gao M; Nakayama A; Hasegawa JY; Yamanaka I
    ACS Omega; 2020 Nov; 5(43):28158-28167. PubMed ID: 33163798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions.
    Smith ML; Kort EA; Karion A; Sweeney C; Herndon SC; Yacovitch TI
    Environ Sci Technol; 2015 Jul; 49(13):8158-66. PubMed ID: 26148554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Ammonia on Laminar Combustion Characteristics of Methane-Air Flames at Elevated Pressures.
    Jin T; Dong W; Qiu B; Xu C; Liu Y; Chu H
    ACS Omega; 2022 May; 7(18):15326-15337. PubMed ID: 35571814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure broadening in Raman spectra of CH
    Tanichev AS; Petrov DV
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122396. PubMed ID: 36696859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.