These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 38552134)
1. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision. Yang S; Liang Y; Wu S; Sun P; Chen Z J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134 [TBL] [Abstract][Full Text] [Related]
2. [Fully Automatic Glioma Segmentation Algorithm of Magnetic Resonance Imaging Based on 3D-UNet With More Global Contextual Feature Extraction: An Improvement on Insufficient Extraction of Global Features]. Tian H; Wang Y; Ji Y; Rahman MM Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):447-454. PubMed ID: 38645864 [TBL] [Abstract][Full Text] [Related]
3. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT. Wang J; Zhang X; Guo L; Shi C; Tamura S Math Biosci Eng; 2023 Jan; 20(1):1297-1316. PubMed ID: 36650812 [TBL] [Abstract][Full Text] [Related]
4. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Kushnure DT; Talbar SN Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959 [TBL] [Abstract][Full Text] [Related]
5. S2DA-Net: Spatial and spectral-learning double-branch aggregation network for liver tumor segmentation in CT images. Liu H; Yang J; Jiang C; He S; Fu Y; Zhang S; Hu X; Fang J; Ji W Comput Biol Med; 2024 May; 174():108400. PubMed ID: 38613888 [TBL] [Abstract][Full Text] [Related]
6. Liver tumor segmentation based on 3D convolutional neural network with dual scale. Meng L; Tian Y; Bu S J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212 [TBL] [Abstract][Full Text] [Related]
7. A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans. Chen Y; Zheng C; Zhou T; Feng L; Liu L; Zeng Q; Wang G Comput Biol Med; 2023 Jan; 152():106421. PubMed ID: 36527780 [TBL] [Abstract][Full Text] [Related]
8. Hepatic and portal vein segmentation with dual-stream deep neural network. Xu J; Jiang W; Wu J; Zhang W; Zhu Z; Xin J; Zheng N; Wang B Med Phys; 2024 Aug; 51(8):5441-5456. PubMed ID: 38648676 [TBL] [Abstract][Full Text] [Related]
9. STC-UNet: renal tumor segmentation based on enhanced feature extraction at different network levels. Hu W; Yang S; Guo W; Xiao N; Yang X; Ren X BMC Med Imaging; 2024 Jul; 24(1):179. PubMed ID: 39030510 [TBL] [Abstract][Full Text] [Related]
10. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images. Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468 [TBL] [Abstract][Full Text] [Related]
11. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images. Liu T; Liu J; Ma Y; He J; Han J; Ding X; Chen CT Med Phys; 2021 Jan; 48(1):264-272. PubMed ID: 33159809 [TBL] [Abstract][Full Text] [Related]
12. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Budak Ü; Guo Y; Tanyildizi E; Şengür A Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758 [TBL] [Abstract][Full Text] [Related]
14. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
15. ASD-Net: a novel U-Net based asymmetric spatial-channel convolution network for precise kidney and kidney tumor image segmentation. Ji Z; Mu J; Liu J; Zhang H; Dai C; Zhang X; Ganchev I Med Biol Eng Comput; 2024 Jun; 62(6):1673-1687. PubMed ID: 38326677 [TBL] [Abstract][Full Text] [Related]
16. Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net. Wu Y; Shen H; Tan Y; Shi Y Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1915-1922. PubMed ID: 35672595 [TBL] [Abstract][Full Text] [Related]
17. A Liver Segmentation Method Based on the Fusion of VNet and WGAN. Ma J; Deng Y; Ma Z; Mao K; Chen Y Comput Math Methods Med; 2021; 2021():5536903. PubMed ID: 34659447 [TBL] [Abstract][Full Text] [Related]
18. Automatic liver segmentation by integrating fully convolutional networks into active contour models. Guo X; Schwartz LH; Zhao B Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688 [TBL] [Abstract][Full Text] [Related]
19. Shift-channel attention and weighted-region loss function for liver and dense tumor segmentation. Li J; Huang G; He J; Chen Z; Pun CM; Yu Z; Ling WK; Liu L; Zhou J; Huang J Med Phys; 2022 Nov; 49(11):7193-7206. PubMed ID: 35746843 [TBL] [Abstract][Full Text] [Related]
20. Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images. Liu H; Zhou Y; Gou S; Luo Z Comput Biol Med; 2024 May; 174():108420. PubMed ID: 38613896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]