BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38552142)

  • 1. Tellurium Containing Long Lived Emissive Fluorophore for Selective and Visual Detection of Picric Acid through Photo-Induced Electron Transfer.
    Banerjee B; Ali A; Kumar S; Verma RK; Verma VK; Singh RC
    Chempluschem; 2024 Mar; ():e202400035. PubMed ID: 38552142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Copper Metal Organic Framework Based on Schiff Base Tricarboxylate Ligand for Highly Selective and Sensitive Detection of 2,4,6-Trinitrophenol in Aqueous Medium.
    Kaur M; Yusuf M; Malik AK
    J Fluoresc; 2021 Nov; 31(6):1959-1973. PubMed ID: 34564823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heteroatom-Doped Carbon Quantum Dots and Polymer Composite as Dual-Mode Nanoprobe for Fluorometric and Colorimetric Determination of Picric Acid.
    Koç ÖK; Üzer A; Apak R
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42066-42079. PubMed ID: 37611222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium.
    Liu SG; Luo D; Li N; Zhang W; Lei JL; Li NB; Luo HQ
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21700-9. PubMed ID: 27471907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N,N-Diethylamine appended binuclear Zn(ii) complexes: highly selective and sensitive fluorescent chemosensors for picric acid.
    Kumar A; Kumar A; Pandey DS
    Dalton Trans; 2016 May; 45(20):8475-84. PubMed ID: 27114325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ni-MOF as Fluorescent/Electrochemical Dual Probe for Ultrasensitive Detection of Picric Acid from Aqueous Media.
    Chongdar S; Mondal U; Chakraborty T; Banerjee P; Bhaumik A
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36893380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing of picric acid using an AIEE active "Turn Off" fluorescent probe derived from hydroxy naphthaldehyde and benzyloxy benzaldehyde.
    Arshad M; Sowmya P; Paul A; Joseph A
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123465. PubMed ID: 37783035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Theoretical Studies of Fluorescent "Turn Off" Sensor Functionalized With Carboxylic Acid and Naphthalene Group for Selective Detection of 2,4,6-Trinitrophenol.
    Kaur M
    J Fluoresc; 2024 May; 34(3):1139-1159. PubMed ID: 37486560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material.
    He N; Gao M; Shen D; Li H; Han Z; Zhao P
    Forensic Sci Int; 2019 Apr; 297():1-7. PubMed ID: 30739882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrazoline-Based Fluorescent Probe: Synthesis, Characterization, Theoretical Simulation, and Detection of Picric Acid.
    Sharma P; Yusuf M; Malik AK
    J Fluoresc; 2023 Aug; ():. PubMed ID: 37646875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution.
    Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid.
    Santra DC; Bera MK; Sukul PK; Malik S
    Chemistry; 2016 Feb; 22(6):2012-2019. PubMed ID: 26743445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electron-rich small AIEgen as a solid platform for the selective and ultrasensitive on-site visual detection of TNT in the solid, solution and vapor states.
    Prusti B; Chakravarty M
    Analyst; 2020 Mar; 145(5):1687-1694. PubMed ID: 31894757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Colorimetric Real-Time Sensing Behavior of a Newly Designed CT Complex toward Nitrobenzene and Co
    Khan IM; Shakya S
    ACS Omega; 2019 Jun; 4(6):9983-9995. PubMed ID: 31460091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dicyanamide-intertwined assembly of two new Zn complexes based on N
    Majumdar D; Dey S; Kumari A; Pal TK; Bankura K; Mishra D
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119612. PubMed ID: 33689999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Olefin-based, Fluorescent Covalent Organic Framework for Selective Sensing of Aromatic Amines.
    Li L; Ma Y; Yang H; Niu J; Yang H; Wang F; Hu C; Zhang Y; Guan X; Peng H; Ma G
    Chem Asian J; 2022 Jul; 17(13):e202200279. PubMed ID: 35466562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrene-Based Chemosensor for Picric Acid-Fundamentals to Smartphone Device Design.
    Kathiravan A; Gowri A; Khamrang T; Kumar MD; Dhenadhayalan N; Lin KC; Velusamy M; Jaccob M
    Anal Chem; 2019 Oct; 91(20):13244-13250. PubMed ID: 31542920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed optical sensor for highly sensitive detection of picric acid using perovskite nanocrystals and mechanism of photo-electron transfer.
    Kumar A; Nath P; Kumar V; Kumar Tailor N; Satapathi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():121956. PubMed ID: 36252303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H-Bonding Interactions Induced Two Isostructural Cd(II) Metal-Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives.
    Wang ZJ; Qin L; Chen JX; Zheng HG
    Inorg Chem; 2016 Nov; 55(21):10999-11005. PubMed ID: 27767307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Carbon Nitride Nanoparticles for Picric Acid Sensing.
    Patir K
    J Fluoresc; 2024 Jun; ():. PubMed ID: 38874826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.