These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38552229)

  • 1. An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate - Retarded Growth of Metal Nanoparticles at Higher Rates.
    Turner SJ; Visser NL; Dalebout R; Wezendonk DFL; de Jongh PE; de Jong KP
    Small; 2024 Aug; 20(32):e2401009. PubMed ID: 38552229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere.
    Visser NL; Turner SJ; Stewart JA; Vandegehuchte BD; van der Hoeven JES; de Jongh PE
    ACS Nano; 2023 Aug; 17(15):14963-14973. PubMed ID: 37504574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanthanum-Modified MCF-Derived Nickel Phyllosilicate Catalyst for Enhanced CO
    Zhang T; Liu Q
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19587-19600. PubMed ID: 32281371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy.
    van den Berg R; Elkjaer CF; Gommes CJ; Chorkendorff I; Sehested J; de Jongh PE; de Jong KP; Helveg S
    J Am Chem Soc; 2016 Mar; 138(10):3433-42. PubMed ID: 26891132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.
    Meijerink MJ; de Jong KP; Zečević J
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observations of dynamic PtCo interactions in fuel cell catalyst precursors at the atomic level using E(S)TEM.
    Ward MR; Theobald B; Sharman J; Boyes ED; Gai PL
    J Microsc; 2018 Feb; 269(2):143-150. PubMed ID: 28682468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Cu-In Catalyst Nanoparticles under Hydrogen Plasma Treatment and Silicon Nanowire Growth Conditions.
    Wang W; Ngo É; Bulkin P; Zhang Z; Foldyna M; Roca I Cabarrocas P; Johnson EV; Maurice JL
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles of nickel oxide and nickel hydroxide using lyophilisomes of fibrinogen as template.
    Vimala Rani JD; Kamatchi S; Dhathathreyan A
    J Colloid Interface Sci; 2010 Jan; 341(1):48-52. PubMed ID: 19822319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of gold nanoparticles in a free-standing ionic liquid triggered by heat and electron irradiation.
    Keller D; Henninen TR; Erni R
    Micron; 2019 Feb; 117():16-21. PubMed ID: 30419432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of support effects on the reduction of Ni2+ ions in aqueous hydrazine.
    Boudjahem AG; Monteverdi S; Mercy M; Bettahar MM
    Langmuir; 2004 Jan; 20(1):208-13. PubMed ID: 15745022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.
    Jendrzej S; Gökce B; Amendola V; Barcikowski S
    J Colloid Interface Sci; 2016 Feb; 463():299-307. PubMed ID: 26555960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic formation of a gas permeable layer selectively deposited on supported metal nanoparticles for sintering-resistant thermal catalysis.
    Takabayashi A; Kishimoto F; Tsuchiya H; Mikami H; Takanabe K
    Nanoscale Adv; 2023 Feb; 5(4):1124-1132. PubMed ID: 36798490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ study of nucleation and growth dynamics of Au nanoparticles on MoS
    Song B; He K; Yuan Y; Sharifi-Asl S; Cheng M; Lu J; Saidi WA; Shahbazian-Yassar R
    Nanoscale; 2018 Aug; 10(33):15809-15818. PubMed ID: 30102314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoreactors for studying single nanoparticle coarsening.
    Chai J; Liao X; Giam LR; Mirkin CA
    J Am Chem Soc; 2012 Jan; 134(1):158-61. PubMed ID: 22235989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal Nanoparticles Formation from Nickel Hydroxide.
    Sidorova EN; Dzidziguri EL; Vinichenko YP; Ozherelkov DY; Shinkaryov AS; Gromov AA; Nalivaiko AY
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33096781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Temperature, Oil Type, and Copolymer Concentration on the Long-Term Stability of Oil-in-Water Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles.
    Hunter SJ; Chohan P; Varlas S; Armes SP
    Langmuir; 2024 Feb; 40(7):3702-14. PubMed ID: 38316052
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wang X; Li M; Xu P; Chen Y; Yu H; Li X
    Nano Lett; 2022 Apr; 22(7):3157-3164. PubMed ID: 35191710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chemistry of Spinel Ferrite Nanoparticle Nucleation, Crystallization, and Growth.
    Andersen HL; Granados-Miralles C; Jensen KMØ; Saura-Múzquiz M; Christensen M
    ACS Nano; 2024 Apr; 18(14):9852-9870. PubMed ID: 38526912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.