BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38552485)

  • 21. New insights into long-lasting Cr(VI) removal from groundwater using in situ biosulfidated zero-valent iron with sulfate-reducing bacteria.
    Xu H; Qin C; Zhang H; Zhao Y
    J Environ Manage; 2024 Mar; 355():120488. PubMed ID: 38457892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulating the FeS
    Qu G; Zhang Y; Duan Z; Li K; Xu C
    Water Res; 2024 Jan; 248():120860. PubMed ID: 37984041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism.
    Gu Y; Gong L; Qi J; Cai S; Tu W; He F
    Water Res; 2019 Aug; 159():233-241. PubMed ID: 31100577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation.
    Garcia AN; Zhang Y; Ghoshal S; He F; O'Carroll DM
    Environ Sci Technol; 2021 Jul; 55(13):8464-8483. PubMed ID: 34170112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced reductive degradation of chloramphenicol by sulfidated microscale zero-valent iron: Sulfur-induced mechanism, competitive kinetics, and new transformation pathway.
    Dai Y; Du W; Jiang C; Wu W; Dong Y; Duan L; Sun S; Zhang B; Zhao S
    Water Res; 2023 Apr; 233():119743. PubMed ID: 36827765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition and stimulation of two perchloroethene degrading bacterial cultures by nano- and micro-scaled zero-valent iron particles.
    Summer D; Schöftner P; Watzinger A; Reichenauer TG
    Sci Total Environ; 2020 Jun; 722():137802. PubMed ID: 32199366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical roles of sulfidation solvent in controlling surface properties and the dechlorination reactivity of S-nZVI.
    Li X; Zeng L; Wen N; Deng D
    J Hazard Mater; 2021 Sep; 417():126014. PubMed ID: 34229377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of tetracycline by biochar-supported biogenetic sulfidated zero valent iron: Kinetics, pathways and mechanism.
    Wang A; Hou J; Feng Y; Wu J; Miao L
    Water Res; 2022 Oct; 225():119168. PubMed ID: 36183543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Sulfidation and Nitrate on the Reduction of
    Qin H; Guan X; Tratnyek PG
    Environ Sci Technol; 2019 Aug; 53(16):9744-9754. PubMed ID: 31343874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic role of nitrate anion in TCE dechlorination by ball milled ZVI and sulfidated ZVI: Experimental investigation and theoretical analysis.
    Gong L; Qi J; Lv N; Qiu X; Gu Y; Zhao J; He F
    J Hazard Mater; 2021 Feb; 403():123844. PubMed ID: 33264925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoding the divalent cation effect on sulfidation of zero-valent iron: Phase evolution and FeS
    Qu G; Wang X; Duan Z; Li F; Xu C
    J Hazard Mater; 2024 Mar; 465():133441. PubMed ID: 38215521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of nitrate in simultaneous removal of nitrate and trichloroethylene by sulfidated zero-valent Iron.
    Hou J; Wang A; Miao L; Wu J; Xing B
    Sci Total Environ; 2022 Jul; 829():154304. PubMed ID: 35304142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Structure and Sulfur Content Affect Reductive Dechlorination of Chlorinated Ethenes by Sulfidized Nanoscale Zerovalent Iron.
    Mo Y; Xu J; Zhu L
    Environ Sci Technol; 2022 May; 56(9):5808-5819. PubMed ID: 35442653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfidation of zerovalent iron for improving the selectivity toward Cr(VI) in oxic water: Involvements of FeS
    Li H; Zhang J; Gu K; Li J
    J Hazard Mater; 2021 May; 409():124498. PubMed ID: 33250310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unraveling the neglected role of elemental sulfur in chromate removal by sulfidated microscale zero-valent iron.
    Dai Y; Dong Y; Duan L; Zhang B; Wang S; Zhao S
    J Hazard Mater; 2023 May; 449():131025. PubMed ID: 36801721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of Chloroform by Zerovalent Iron: Effects of Mechanochemical Sulfidation and Nitridation on the Kinetics and Mechanism.
    Gong L; Chen J; Hu Y; He K; Bylaska EJ; Tratnyek PG; He F
    Environ Sci Technol; 2023 Jul; 57(26):9811-9821. PubMed ID: 37339398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.
    Gunawardana B; Swedlund PJ; Singhal N; Nieuwoudt MK
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17797-17806. PubMed ID: 29675820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acceleration of microiron-based dechlorination in water by contact with fibrous activated carbon.
    Vogel M; Kopinke FD; Mackenzie K
    Sci Total Environ; 2019 Apr; 660():1274-1282. PubMed ID: 30743922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minor chromium passivation of S-ZVI enhanced the long-term dechlorination performance of trichlorethylene: Effects of corrosion and passivation on the reactivity and selectivity.
    Guo J; Wang D; Shi Y; Lyu H; Tang J
    Water Res; 2024 Feb; 249():120973. PubMed ID: 38071903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency.
    Velimirovic M; Auffan M; Carniato L; Micić Batka V; Schmid D; Wagner S; Borschneck D; Proux O; von der Kammer F; Hofmann T
    Sci Total Environ; 2018 Mar; 618():1619-1627. PubMed ID: 29111242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.