These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38552490)

  • 21. The critical impacts of pyrochar during 2,4,6-trichlorophenol photochemical remediation process: Cooperation between persistent free radicals and oxygenated functional groups.
    Liu L; Wang J; Yang H; Gao D; Cui Y; Chen H; Qin Y; Ye R; Ding X
    Environ Pollut; 2023 Aug; 330():121813. PubMed ID: 37178952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications.
    Rashid MS; Liu G; Yousaf B; Hamid Y; Rehman A; Arif M; Ahmed R; Ashraf A; Song Y
    Environ Pollut; 2022 Dec; 315():120335. PubMed ID: 36202269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of persistent free radicals in different molecular weight fractions from peat humic acids and their impact in reducing goethite.
    Shi Y; Zhang C; Liu J; Dai Q; Jiang Y; Xi M; Jia H
    Sci Total Environ; 2021 Nov; 797():149173. PubMed ID: 34303988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using biochar to strengthen the removal of antibiotic resistance genes: Performance and mechanism.
    Wu C; Fu L; Li H; Liu X; Wan C
    Sci Total Environ; 2022 Apr; 816():151554. PubMed ID: 34774630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants - A review.
    Dorner M; Lokesh S; Yang Y; Behrens S
    Sci Total Environ; 2022 Dec; 852():158381. PubMed ID: 36055499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter.
    Lomnicki S; Truong H; Vejerano E; Dellinger B
    Environ Sci Technol; 2008 Jul; 42(13):4982-8. PubMed ID: 18678037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: The pivotal roles of persistent free radicals and ecotoxicity assessment.
    Liu B; Guo W; Wang H; Si Q; Zhao Q; Luo H; Ren N
    J Hazard Mater; 2020 Nov; 398():122768. PubMed ID: 32768854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of Cr(VI) removal by magnetic greigite/biochar composites.
    Wang X; Xu J; Liu J; Liu J; Xia F; Wang C; Dahlgren RA; Liu W
    Sci Total Environ; 2020 Jan; 700():134414. PubMed ID: 31698277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient peroxymonosulfate activation by biochar-based nanohybrids for the degradation of pharmaceutical and personal care products in aquatic environments.
    Liu T; Cui K; Li CX; Chen Y; Wang Q; Yuan X; Chen Y; Liu J; Zhang Q
    Chemosphere; 2023 Jan; 311(Pt 1):137084. PubMed ID: 36334754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties.
    Zhong D; Jiang Y; Zhao Z; Wang L; Chen J; Ren S; Liu Z; Zhang Y; Tsang DCW; Crittenden JC
    Environ Sci Technol; 2019 Aug; 53(15):9034-9044. PubMed ID: 31264414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly-efficient degradation of organic pollutants by oxalic acid modified sludge biochar: Mechanism and pathways.
    Tang X; Lei Y; Yu C; Wang C; Zhang P; Lu H
    Chemosphere; 2023 Jun; 325():138409. PubMed ID: 36925015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The key role of persistent free radicals on the surface of hydrochar and pyrocarbon in the removal of heavy metal-organic combined pollutants.
    Zhang Y; Sun X; Bian W; Peng J; Wan H; Zhao J
    Bioresour Technol; 2020 Dec; 318():124046. PubMed ID: 32889124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced degradation of organic contaminants using catalytic activity of carbonaceous structures: A strategy for the reuse of exhausted sorbents.
    Mer K; Sajjadi B; Egiebor NO; Chen WY; Mattern DL; Tao W
    J Environ Sci (China); 2021 Jan; 99():267-273. PubMed ID: 33183704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revealing the generation of reactive oxygen species in hydrochar and pyrochar: Insight into rational regulation of free radicals and catalytic mechanism.
    Zhou W; Li M; Liu Y
    J Environ Manage; 2024 Feb; 351():119876. PubMed ID: 38157577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfur-Containing Persistent Free Radicals and Reactive Species on Photoaged Microplastics: Identification and the Formation Mechanism.
    Jiang W; Zhu K; Ma H; Liu J; Zhang C; Dai Y; Jia H
    Environ Sci Technol; 2023 Jun; 57(23):8680-8690. PubMed ID: 37260184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation Mechanism of Persistent Free Radicals in Lignocellulose-Derived Biochar: Roles of Reducible Carbonyls.
    Tao W; Zhang P; Li H; Yang Q; Oleszczuk P; Pan B
    Environ Sci Technol; 2022 Aug; 56(15):10638-10645. PubMed ID: 35839311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying the Persistent Free Radicals (PFRs) Formed as Crucial Metastable Intermediates during Peroxymonosulfate (PMS) Activation by N-Doped Carbonaceous Materials.
    Zhen Y; Zhu S; Sun Z; Tian Y; Li Z; Yang C; Ma J
    Environ Sci Technol; 2021 Jul; 55(13):9293-9304. PubMed ID: 34139837
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.