These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38552581)

  • 1. Enhanced contact flexibility from nanoparticles in capillary suspensions.
    Liu L; Allard J; Koos E
    J Colloid Interface Sci; 2024 Jul; 665():643-654. PubMed ID: 38552581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids.
    Bossler F; Koos E
    Langmuir; 2016 Feb; 32(6):1489-501. PubMed ID: 26807651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal approaches to characterize the structure of capillary suspensions using rheology and confocal microscopy.
    Bossler F; Maurath J; Dyhr K; Willenbacher N; Koos E
    J Rheol (N Y N Y); 2018 Jan; 62(1):183-196. PubMed ID: 29503485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary detachment of a microparticle from a liquid-liquid interface.
    Rahat SA; Chaudhuri K; Pham JT
    Soft Matter; 2023 Aug; 19(33):6247-6254. PubMed ID: 37555264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of mixing conditions on the rheological properties and structure of capillary suspensions.
    Bossler F; Weyrauch L; Schmidt R; Koos E
    Colloids Surf A Physicochem Eng Asp; 2017 Apr; 518():85-97. PubMed ID: 28194044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yield Stress Enhancement of a Ternary Colloidal Suspension via the Addition of Minute Amounts of Sodium Alginate to the Interparticle Capillary Bridges.
    Yang J; Park HS; Kim J; Mok J; Kim T; Shin EK; Kwak C; Lim S; Kim CB; Park JS; Na HB; Choi D; Lee J
    Langmuir; 2020 Aug; 36(32):9424-9435. PubMed ID: 32659098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology of particle/water/oil three-phase dispersions: Electrostatic vs. capillary bridge forces.
    Georgiev MT; Danov KD; Kralchevsky PA; Gurkov TD; Krusteva DP; Arnaudov LN; Stoyanov SD; Pelan EG
    J Colloid Interface Sci; 2018 Mar; 513():515-526. PubMed ID: 29179092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking intermolecular interactions and rheological behaviour in capillary suspensions.
    Jarray A; Feichtinger A; Scholten E
    J Colloid Interface Sci; 2022 Dec; 627():415-426. PubMed ID: 35863200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct 3D printing of graphene using capillary suspensions.
    Ding H; Barg S; Derby B
    Nanoscale; 2020 Jun; 12(21):11440-11447. PubMed ID: 32436495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear distortion and failure of capillary bridges. Wetting information beyond contact angle analysis.
    Wang L; McCarthy TJ
    Langmuir; 2013 Jun; 29(25):7776-81. PubMed ID: 23692651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction.
    Domenech T; Velankar SS
    Soft Matter; 2015 Feb; 11(8):1500-16. PubMed ID: 25582822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the pinning time of a receding contact line under forced wetting conditions.
    Fernández-Toledano JC; Rigaut C; Mastrangeli M; De Coninck J
    J Colloid Interface Sci; 2020 Apr; 565():449-457. PubMed ID: 31982711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lightweight Porous Glass Composite Materials Based on Capillary Suspensions.
    Hartung K; Benner C; Willenbacher N; Koos E
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary Structured Suspensions from In Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media.
    Dunstan TS; Das AAK; Starck P; Stoyanov SD; Paunov VN
    Langmuir; 2018 Jan; 34(1):442-452. PubMed ID: 29239178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative normal stress differences N
    Natalia I; Zeiler N; Weiß M; Koos E
    Soft Matter; 2018 May; 14(17):3254-3264. PubMed ID: 29687109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly conductive, printable pastes from capillary suspensions.
    Schneider M; Koos E; Willenbacher N
    Sci Rep; 2016 Aug; 6():31367. PubMed ID: 27506726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restructuring and aging in a capillary suspension.
    Koos E; Kannowade W; Willenbacher N
    Rheol Acta; 2014 Dec; 53(12):947-957. PubMed ID: 25729113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation the injectability of injectable microparticle delivery systems on the basis of injection force and discharged rate.
    Zhao C; Zhu Z; Cao X; Pan F; Li F; Xue M; Guo Y; Zhao Y; Zeng J; Liu Y; Yang Z; Liu Y; Ren F; Feng L
    Eur J Pharm Biopharm; 2023 Sep; 190():58-72. PubMed ID: 37437667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces.
    Schneider M; Maurath J; Fischer SB; Weiß M; Willenbacher N; Koos E
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11095-11105. PubMed ID: 28263554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.