These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38552667)

  • 1. Realization of Fine-Tuning the Lattice Thermal Conductivity and Anharmonicity in Layered Semiconductors via Entropy Engineering.
    Chen H; Fu J; Huang S; Qiu Y; Zhao E; Li S; Huang J; Dai P; Fan H; Xiao B
    Adv Mater; 2024 Mar; ():e2400911. PubMed ID: 38552667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors.
    Morelli DT; Jovovic V; Heremans JP
    Phys Rev Lett; 2008 Jul; 101(3):035901. PubMed ID: 18764265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof-of-Principle Study in
    Chen Y; Zhang B; Zhang Y; Wu H; Peng K; Yang H; Zhang Q; Liu X; Chai Y; Lu X; Wang G; Zhang Z; He J; Han X; Zhou X
    Adv Sci (Weinh); 2021 Apr; 8(8):2002051. PubMed ID: 33898166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J; Meng L
    ACS Omega; 2022 Jun; 7(23):20186-20194. PubMed ID: 35722022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio study of mechanical and thermal properties of GeTe-based and PbSe-based high-entropy chalcogenides.
    Hasan S; Adhikari P; San S; Ching WY
    Sci Rep; 2023 Sep; 13(1):16218. PubMed ID: 37758746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Thermal Transport in the Homogeneous Cage-Like Compounds Cu
    Yang D; Yang J; Quan X; Zhang B; Wang G; Lu X; Zhou X
    Chemphyschem; 2021 Dec; 22(24):2579-2584. PubMed ID: 34622539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles study of the layered thermoelectric material TiNBr.
    Zhang S; Xu B; Lin Y; Nan C; Liu W
    RSC Adv; 2019 Apr; 9(23):12886-12894. PubMed ID: 35520787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Thermoelectric Performance in High Entropy Alloys Sn
    Wang X; Yao H; Zhang Z; Li X; Chen C; Yin L; Hu K; Yan Y; Li Z; Yu B; Cao F; Liu X; Lin X; Zhang Q
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18638-18647. PubMed ID: 33847476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPb
    Dawahre L; Lu R; Djieutedjeu H; Lopez J; Bailey TP; Buchanan B; Yin Z; Uher C; Poudeu PFP
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44991-44997. PubMed ID: 32902948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Thermoelectric Performance of p-Type PbTe by Entropy Engineering and Temperature-Dependent Precipitates.
    Zhang M; Cai J; Gao F; Zhang Z; Li M; Chen Z; Wang Y; Hu D; Tan X; Liu G; Yue S; Jiang J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):907-914. PubMed ID: 38146641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications and Optimization of Domain Structures in IV-VI High-Entropy Thermoelectric Materials.
    Liu Y; Xie H; Li Z; Dos Reis R; Li J; Hu X; Meza P; AlMalki M; Snyder GJ; Grayson MA; Wolverton C; Kanatzidis MG; Dravid VP
    J Am Chem Soc; 2024 May; 146(18):12620-12635. PubMed ID: 38669614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF.
    Yedukondalu N; Shafique A; Rakesh Roshan SC; Barhoumi M; Muthaiah R; Ehm L; Parise JB; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40738-40748. PubMed ID: 36053500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressed Lattice Thermal Conductivity in Haeckelite Compounds for High-Performance Thermoelectric Applications.
    Zhang X; Li Y; Wang Z; Jiang Y; Dong T; Xu D; Feng Z; Yan Y; Zeng Z
    J Phys Chem Lett; 2024 Jun; 15(24):6266-6271. PubMed ID: 38844414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realization of an ultra-low lattice thermal conductivity in Bi
    Vijay V; Harish S; Archana J; Navaneethan M
    J Colloid Interface Sci; 2023 May; 637():340-353. PubMed ID: 36709591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of anharmonic strength and number of allowed three-phonon processes in lattice thermal conductivity of SnTe based compounds.
    Keshri SP; Medhi A
    J Phys Condens Matter; 2021 Mar; 33(11):115701. PubMed ID: 33326936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the Minimum Limit of Thermal Conductivity of Mg
    Hu J; Zhu J; Dong X; Guo M; Sun Y; Shi W; Zhu Y; Wu H; Guo F; Zhang YX; Ge ZH; Zhang Q; Liu Z; Cai W; Sui J
    Small; 2023 Aug; 19(33):e2301382. PubMed ID: 37086113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of low lattice thermal conductivity of Pb
    Knura R; Parashchuk T; Yoshiasa A; Wojciechowski KT
    Dalton Trans; 2021 Mar; 50(12):4323-4334. PubMed ID: 33688875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.