BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38552741)

  • 41. Determination of Borrelia surface lipoprotein anchor topology by surface proteolysis.
    Chen S; Kumru OS; Zückert WR
    J Bacteriol; 2011 Nov; 193(22):6379-83. PubMed ID: 21908659
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Classical Complement Pathway Is Required to Control
    Zhi H; Xie J; Skare JT
    Front Immunol; 2018; 9():959. PubMed ID: 29867944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease.
    Matsushita M; Fujita T
    J Exp Med; 1992 Dec; 176(6):1497-502. PubMed ID: 1460414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The OspE-related proteins inhibit complement deposition and enhance serum resistance of Borrelia burgdorferi, the lyme disease spirochete.
    Kenedy MR; Akins DR
    Infect Immun; 2011 Apr; 79(4):1451-7. PubMed ID: 21282413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Complement C1r serine protease contributes to kidney fibrosis.
    Xavier S; Sahu RK; Bontha SV; Mass V; Taylor RP; Megyesi J; Thielens NM; Portilla D
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1293-F1304. PubMed ID: 31509012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1.
    Hartmann K; Corvey C; Skerka C; Kirschfink M; Karas M; Brade V; Miller JC; Stevenson B; Wallich R; Zipfel PF; Kraiczy P
    Mol Microbiol; 2006 Sep; 61(5):1220-36. PubMed ID: 16925556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective binding of Borrelia burgdorferi OspE paralogs to factor H and serum proteins from diverse animals: possible expansion of the role of OspE in Lyme disease pathogenesis.
    Hovis KM; Tran E; Sundy CM; Buckles E; McDowell JV; Marconi RT
    Infect Immun; 2006 Mar; 74(3):1967-72. PubMed ID: 16495576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical characterization and location of ionic interactions involved in the assembly of the C1 complex of human complement.
    Illy C; Thielens NM; Arlaud GJ
    J Protein Chem; 1993 Dec; 12(6):771-81. PubMed ID: 8136028
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TFPI inhibits lectin pathway of complement activation by direct interaction with MASP-2.
    Keizer MP; Pouw RB; Kamp AM; Patiwael S; Marsman G; Hart MH; Zeerleder S; Kuijpers TW; Wouters D
    Eur J Immunol; 2015 Feb; 45(2):544-50. PubMed ID: 25359215
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human complement C1r and C1s proteins and genes: studies with molecular probes.
    Tosi M; Journet A; Duponchel C; Couture-Tosi E; Meo T
    Behring Inst Mitt; 1989 Jul; (84):65-71. PubMed ID: 2572213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complement Evasion by Lyme Disease Spirochetes.
    Skare JT; Garcia BL
    Trends Microbiol; 2020 Nov; 28(11):889-899. PubMed ID: 32482556
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyphosphate is a novel cofactor for regulation of complement by a serpin, C1 inhibitor.
    Wijeyewickrema LC; Lameignere E; Hor L; Duncan RC; Shiba T; Travers RJ; Kapopara PR; Lei V; Smith SA; Kim H; Morrissey JH; Pike RN; Conway EM
    Blood; 2016 Sep; 128(13):1766-76. PubMed ID: 27338096
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The initiating proteases of the complement system: controlling the cleavage.
    Duncan RC; Wijeyewickrema LC; Pike RN
    Biochimie; 2008 Feb; 90(2):387-95. PubMed ID: 17850949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional role of the linker between the complement control protein modules of complement protease C1s.
    Bally I; Rossi V; Thielens NM; Gaboriaud C; Arlaud GJ
    J Immunol; 2005 Oct; 175(7):4536-42. PubMed ID: 16177097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in temporal and spatial patterns of outer surface lipoprotein expression generate population heterogeneity and antigenic diversity in the Lyme disease spirochete, Borrelia burgdorferi.
    Hefty PS; Jolliff SE; Caimano MJ; Wikel SK; Akins DR
    Infect Immun; 2002 Jul; 70(7):3468-78. PubMed ID: 12065486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. C1r and C1s from Nile tilapia (Oreochromis niloticus): Molecular characterization, transcriptional profiling upon bacterial and IFN-γ inductions and potential role in response to bacterial infection.
    Zhong X; Chen M; Ding M; Zhong M; Li B; Wang Y; Fu S; Yin X; Guo Z; Ye J
    Fish Shellfish Immunol; 2017 Nov; 70():240-251. PubMed ID: 28882800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. C1s, the protease messenger of C1. Structure, function and physiological significance.
    Gál P; Ambrus G; Závodszky P
    Immunobiology; 2002 Sep; 205(4-5):383-94. PubMed ID: 12396001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions.
    Gál P; Dobó J; Závodszky P; Sim RB
    Mol Immunol; 2009 Sep; 46(14):2745-52. PubMed ID: 19477526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of human C1q by combined bottom-up and top-down mass spectrometry: detailed mapping of post-translational modifications and insights into the C1r/C1s binding sites.
    Pflieger D; Przybylski C; Gonnet F; Le Caer JP; Lunardi T; Arlaud GJ; Daniel R
    Mol Cell Proteomics; 2010 Apr; 9(4):593-610. PubMed ID: 20008834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of the C1s Protease and the Classical Complement Pathway by 6-(4-Phenylpiperazin-1-yl)Pyridine-3-Carboximidamide and Chemical Analogs.
    Xu X; Herdendorf TJ; Duan H; Rohlik DL; Roy S; Zhou H; Alkhateeb H; Khandelwal S; Zhou Q; Li P; Arepally GM; Walker JK; Garcia BL; Geisbrecht BV
    J Immunol; 2024 Feb; 212(4):689-701. PubMed ID: 38149922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.