BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38552810)

  • 1. The disrupting effect of chlormequat chloride on growth hormone is associated with pregnancy.
    Wu Z; Ma L; Su D; Xiagedeer B
    Toxicol Lett; 2024 May; 395():17-25. PubMed ID: 38552810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal chlormequat chloride exposure disrupts embryonic growth and produces postnatal adverse effects.
    Xiagedeer B; Hou X; Zhang Q; Hu H; Kang C; Xiao Q; Hao W
    Toxicology; 2020 Sep; 442():152534. PubMed ID: 32622971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlormequat chloride promotes rat embryonic growth and GH-IGF-1 axis.
    Xiagedeer B; Kang C; Hou X; Hu H; Xiao Q; Hao W
    Toxicology; 2020 Jan; 429():152326. PubMed ID: 31704167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential involvement of signaling pathways in the regulation of growth hormone release by somatostatin and growth hormone-releasing hormone in orange-spotted grouper (Epinephelus coioides).
    Wang B; Qin C; Zhang C; Jia J; Sun C; Li W
    Mol Cell Endocrinol; 2014 Feb; 382(2):851-9. PubMed ID: 24183819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlormequat chloride retards rat embryo growth in vitro.
    Xiagedeer B; Wu S; Liu Y; Hao W
    Toxicol In Vitro; 2016 Aug; 34():274-282. PubMed ID: 27165806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of chlormequat chloride on the development of pubertal male rats.
    Huang D; Wu S; Pan Y; Meng Q; Chu H; Jiang J; Shang L; Hao W
    Environ Toxicol Pharmacol; 2016 Oct; 47():92-99. PubMed ID: 27653211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The skeletal developmental toxicity of chlormequat chloride and its underlying mechanisms.
    Huang D; Wu S; Hou X; Jia L; Meng Q; Chu H; Jiang J; Shang L; Hao W
    Toxicology; 2017 Apr; 381():1-9. PubMed ID: 28214531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the plant growth regulator, chlormequat, on mammalian fertility.
    Sørensen MT; Danielsen V
    Int J Androl; 2006 Feb; 29(1):129-33. PubMed ID: 16466532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of GH-releasing hormone/somatostatin on the 5'-promoter activity of the GH gene in vitro.
    Morishita M; Iwasaki Y; Onishi A; Asai M; Mutsuga N; Yoshida M; Oiso Y; Inoue K; Murohara T
    J Mol Endocrinol; 2003 Dec; 31(3):441-8. PubMed ID: 14664705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prenatal chlorocholine chloride exposure on pubertal development and reproduction of male offspring in rats.
    Xiao Q; Hou X; Kang C; Xiagedeer B; Hu H; Meng Q; Jiang J; Hao W
    Toxicol Lett; 2021 Oct; 351():28-36. PubMed ID: 34411681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of cyclic AMP- and calcium-dependent mechanisms in the regulation of growth hormone-releasing hormone-stimulated growth hormone release from ovine pituitary cells.
    Sartin JL; Coleman ES; Steele B
    Domest Anim Endocrinol; 1996 May; 13(3):229-38. PubMed ID: 8738864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fetal ethanol exposure on the in vitro release of growth hormone, somatostatin and growth hormone-releasing factor induced by clonidine and growth hormone feedback in male and female rats.
    Conway S; Ling SY; Leidy JW; Blaine K; Holtzman T
    Alcohol Clin Exp Res; 1997 Aug; 21(5):826-39. PubMed ID: 9267532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of pituitary somatostatin receptor subtype (sst1-5) messenger ribonucleic acid levels by changes in the growth hormone axis.
    Park S; Kamegai J; Johnson TA; Frohman LA; Kineman RD
    Endocrinology; 2000 Oct; 141(10):3556-63. PubMed ID: 11014208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic protein kinase A mediates the growth hormone (GH)-releasing action of GH-releasing factor in purified rat somatotrophs.
    Wong AO; Moor BC; Hawkins CE; Narayanan N; Kraicer J
    Neuroendocrinology; 1995 May; 61(5):590-600. PubMed ID: 7617138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro regulation of pituitary transcription factor-1 (Pit-1) by changes in the hormone environment.
    González-Parra S; Chowen JA; García-Segura LM; Argente J
    Neuroendocrinology; 1996 Jan; 63(1):3-15. PubMed ID: 8839350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Complex World of Regulation of Pituitary Growth Hormone Secretion: The Role of Ghrelin, Klotho, and Nesfatins in It.
    Devesa J
    Front Endocrinol (Lausanne); 2021; 12():636403. PubMed ID: 33776931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putative GH pulse renewal: periventricular somatostatinergic control of an arcuate-nuclear somatostatin and GH-releasing hormone oscillator.
    Farhy LS; Veldhuis JD
    Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1030-42. PubMed ID: 14988084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of growth hormone synthesis.
    Tuggle CK; Trenkle A
    Domest Anim Endocrinol; 1996 Jan; 13(1):1-33. PubMed ID: 8625613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologous and heterologous in vitro regulation of pig pituitary somatostatin receptor subtypes, sst1, sst2 and sst5 mRNA.
    Luque RM; Park S; Peng XD; Delgado E; Gracia-Navarro F; Kineman RD; Malagón MM; Castaño JP
    J Mol Endocrinol; 2004 Apr; 32(2):437-48. PubMed ID: 15072550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responsiveness of chicken embryonic somatotropes to somatostatin (SRIF) and IGF-I.
    Piper MM; Porter TE
    J Endocrinol; 1997 Aug; 154(2):303-10. PubMed ID: 9291841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.