These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38553168)

  • 1. Trustworthy clinical AI solutions: A unified review of uncertainty quantification in Deep Learning models for medical image analysis.
    Lambert B; Forbes F; Doyle S; Dehaene H; Dojat M
    Artif Intell Med; 2024 Apr; 150():102830. PubMed ID: 38553168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods.
    Huang L; Ruan S; Xing Y; Feng M
    Med Image Anal; 2024 Oct; 97():103223. PubMed ID: 38861770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibrating ensembles for scalable uncertainty quantification in deep learning-based medical image segmentation.
    Buddenkotte T; Escudero Sanchez L; Crispin-Ortuzar M; Woitek R; McCague C; Brenton JD; Öktem O; Sala E; Rundo L
    Comput Biol Med; 2023 Sep; 163():107096. PubMed ID: 37302375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI applications to medical images: From machine learning to deep learning.
    Castiglioni I; Rundo L; Codari M; Di Leo G; Salvatore C; Interlenghi M; Gallivanone F; Cozzi A; D'Amico NC; Sardanelli F
    Phys Med; 2021 Mar; 83():9-24. PubMed ID: 33662856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Uncertainty in Deep Learning of Radiologic Images.
    Faghani S; Moassefi M; Rouzrokh P; Khosravi B; Baffour FI; Ringler MD; Erickson BJ
    Radiology; 2023 Aug; 308(2):e222217. PubMed ID: 37526541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013-2023).
    Seoni S; Jahmunah V; Salvi M; Barua PD; Molinari F; Acharya UR
    Comput Biol Med; 2023 Oct; 165():107441. PubMed ID: 37683529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain.
    Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH
    Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuro-XAI: Explainable deep learning framework based on deeplabV3+ and bayesian optimization for segmentation and classification of brain tumor in MRI scans.
    Saeed T; Khan MA; Hamza A; Shabaz M; Khan WZ; Alhayan F; Jamel L; Baili J
    J Neurosci Methods; 2024 Oct; 410():110247. PubMed ID: 39128599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization.
    Papadimitroulas P; Brocki L; Christopher Chung N; Marchadour W; Vermet F; Gaubert L; Eleftheriadis V; Plachouris D; Visvikis D; Kagadis GC; Hatt M
    Phys Med; 2021 Mar; 83():108-121. PubMed ID: 33765601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-Resolved q-Space deep learning with uncertainty quantification.
    Qin Y; Liu Z; Liu C; Li Y; Zeng X; Ye C
    Med Image Anal; 2021 Jan; 67():101885. PubMed ID: 33227600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on deep learning applications in highly multiplexed tissue imaging data analysis.
    Zidane M; Makky A; Bruhns M; Rochwarger A; Babaei S; Claassen M; Schürch CM
    Front Bioinform; 2023; 3():1159381. PubMed ID: 37564726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review.
    Farahat Z; Zrira N; Souissi N; Bennani Y; Bencherif S; Benamar S; Belmekki M; Ngote MN; Megdiche K
    Surv Ophthalmol; 2024; 69(5):707-721. PubMed ID: 38885761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results.
    Mehta R; Filos A; Baid U; Sako C; McKinley R; Rebsamen M; Dätwyler K; Meier R; Radojewski P; Murugesan GK; Nalawade S; Ganesh C; Wagner B; Yu FF; Fei B; Madhuranthakam AJ; Maldjian JA; Daza L; Gómez C; Arbeláez P; Dai C; Wang S; Reynaud H; Mo Y; Angelini E; Guo Y; Bai W; Banerjee S; Pei L; Ak M; Rosas-González S; Zemmoura I; Tauber C; Vu MH; Nyholm T; Löfstedt T; Ballestar LM; Vilaplana V; McHugh H; Maso Talou G; Wang A; Patel J; Chang K; Hoebel K; Gidwani M; Arun N; Gupta S; Aggarwal M; Singh P; Gerstner ER; Kalpathy-Cramer J; Boutry N; Huard A; Vidyaratne L; Rahman MM; Iftekharuddin KM; Chazalon J; Puybareau E; Tochon G; Ma J; Cabezas M; Llado X; Oliver A; Valencia L; Valverde S; Amian M; Soltaninejad M; Myronenko A; Hatamizadeh A; Feng X; Dou Q; Tustison N; Meyer C; Shah NA; Talbar S; Weber MA; Mahajan A; Jakab A; Wiest R; Fathallah-Shaykh HM; Nazeri A; Milchenko M; Marcus D; Kotrotsou A; Colen R; Freymann J; Kirby J; Davatzikos C; Menze B; Bakas S; Gal Y; Arbel T
    J Mach Learn Biomed Imaging; 2022 Aug; 2022():. PubMed ID: 36998700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty quantification via localized gradients for deep learning-based medical image assessments.
    Schott B; Pinchuk D; Santoro-Fernandes V; Klaneček Ž; Rivetti L; Deatsch A; Perlman S; Li Y; Jeraj R
    Phys Med Biol; 2024 Jul; 69(15):. PubMed ID: 38981594
    [No Abstract]   [Full Text] [Related]  

  • 15. Deep Learning-Based Image Classification and Segmentation on Digital Histopathology for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis.
    Pirayesh Z; Mohammad-Rahimi H; Ghasemi N; Motamedian SR; Sadeghi TS; Koohi H; Rokhshad R; Lotfi SM; Najafi A; Alajaji SA; Khoury ZH; Jessri M; Sultan AS
    J Oral Pathol Med; 2024 Oct; 53(9):551-566. PubMed ID: 39256895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging.
    Karkalousos D; Išgum I; Marquering HA; Caan MWA
    Comput Methods Programs Biomed; 2024 Nov; 256():108377. PubMed ID: 39180913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empowering PET: harnessing deep learning for improved clinical insight.
    Artesani A; Bruno A; Gelardi F; Chiti A
    Eur Radiol Exp; 2024 Feb; 8(1):17. PubMed ID: 38321340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.
    Abdar M; Samami M; Dehghani Mahmoodabad S; Doan T; Mazoure B; Hashemifesharaki R; Liu L; Khosravi A; Acharya UR; Makarenkov V; Nahavandi S
    Comput Biol Med; 2021 Aug; 135():104418. PubMed ID: 34052016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promise of artificial intelligence and deep learning in PET and SPECT imaging.
    Arabi H; AkhavanAllaf A; Sanaat A; Shiri I; Zaidi H
    Phys Med; 2021 Mar; 83():122-137. PubMed ID: 33765602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of artificial intelligence, machine learning and deep learning models in corneal disorders - A narrative review.
    Gurnani B; Kaur K; Lalgudi VG; Kundu G; Mimouni M; Liu H; Jhanji V; Prakash G; Roy AS; Shetty R; Gurav JS
    J Fr Ophtalmol; 2024 Sep; 47(7):104242. PubMed ID: 39013268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.