BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38553213)

  • 1. Dynamically bonded cellulose nanocrystal hydrogels: Structure, rheology and fire prevention performance.
    Koparipek-Arslan N; Kaynak-Uraz E; Senses E
    Carbohydr Polym; 2024 Jun; 334():122013. PubMed ID: 38553213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel self-healing and recyclable fire-retardant polyvinyl alcohol/borax hydrogel coatings for the fire safety of rigid polyurethane foam.
    Qian X; Mu N; Zhao X; Shi C; Jiang S; Wan M; Yu B
    Soft Matter; 2023 Aug; 19(32):6097-6107. PubMed ID: 37526969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings.
    Zhang L; Huang Y; Sun P; Hai Y; Jiang S
    Soft Matter; 2021 May; 17(20):5231-5239. PubMed ID: 33949608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating.
    Chen B; Yang L
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-healing, flame-retardant, and antimicrobial chitosan-based dynamic covalent hydrogels.
    Mahaninia MH; Wang Z; Rajabi-Abhari A; Yan N
    Int J Biol Macromol; 2023 Dec; 252():126422. PubMed ID: 37598822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fire Behavior of Wood-Based Composite Materials.
    Renner JS; Mensah RA; Jiang L; Xu Q; Das O; Berto F
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel-Montmorillonite-Based Translucent Matrix.
    Banerjee H; Sivaperuman Kalairaj M; Chang TH; Fu F; Chen PY; Ren H
    Soft Robot; 2022 Feb; 9(1):98-118. PubMed ID: 33764799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Flame-Retardant and Low Heat/Smoke-Release Wood Materials: Fabrication and Properties.
    Deng ZP; Fu T; Song X; Wang ZL; Guo DM; Wang YZ; Song F
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infusing phytate-based biomass flame retardants into the cellulose lumens of Chinese fir wood attains superior flame retardant efficacy.
    Fan S; Gao X; Yang X; Li X
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128975. PubMed ID: 38147971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of a novel self-healing and flame-retardant hydrogel/MXene coating for wood.
    Zhao X; Tian M; Wei R; Jiang S
    Sci Rep; 2023 Feb; 13(1):1826. PubMed ID: 36725969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels.
    Shao C; Meng L; Wang M; Cui C; Wang B; Han CR; Xu F; Yang J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5885-5895. PubMed ID: 30652853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kaolin-embedded cellulose hydrogel with tunable properties as a green fire retardant.
    Ingtipi K; Choudhury BJ; Moholkar VS
    Carbohydr Polym; 2023 Aug; 313():120871. PubMed ID: 37182962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127.
    Kushan E; Senses E
    ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized Cellulose Nanocrystals: A Potential Fire Retardant for Polymer Composites.
    Bajwa DS; Rehovsky C; Shojaeiarani J; Stark N; Bajwa S; Dietenberger MA
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31426592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites.
    Zhang M; Wang D; Li T; Jiang J; Bai H; Wang S; Wang Y; Dong W
    Biomacromolecules; 2023 Feb; 24(2):957-966. PubMed ID: 36716207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Crosslinking of Colloidal Cellulose Nanocrystals for Multifunctional Nanostructured Hydrogels with Tunable Physicochemical Properties.
    Batta-Mpouma J; Kandhola G; Sakon J; Kim JW
    Biomacromolecules; 2022 Oct; 23(10):4085-4096. PubMed ID: 36166819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of the fire behaviour of wood: From pyrolysis to fire retardant mechanisms.
    Mensah RA; Jiang L; Renner JS; Xu Q
    J Therm Anal Calorim; 2023; 148(4):1407-1422. PubMed ID: 35910335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally Friendly, High-Performance Fire Retardant Made from Cellulose and Graphite.
    Santos LP; da Silva DS; Morari TH; Galembeck F
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Thermoresponsive Xyloglucan-Cellulose Nanocrystal Hydrogels.
    Talantikite M; Stimpson TC; Gourlay A; Le-Gall S; Moreau C; Cranston ED; Moran-Mirabal JM; Cathala B
    Biomacromolecules; 2021 Feb; 22(2):743-753. PubMed ID: 33332094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using recombinant adhesive proteins as durable and green flame-retardant coatings.
    Leong WI; Lo OLI; Cheng FT; Cheong WM; Seak LCU
    Synth Syst Biotechnol; 2021 Dec; 6(4):369-376. PubMed ID: 34786512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.