BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38553223)

  • 1. Role of microfibril angle in molecular deformation of cellulose fibrils in Pinus massoniana compression wood and opposite wood studied by in-situ WAXS.
    Guo F; Wang J; Liu W; Hu J; Chen Y; Zhang X; Yang R; Yu Y
    Carbohydr Polym; 2024 Jun; 334():122024. PubMed ID: 38553223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose microfibril angle in the cell wall of wood fibres.
    Barnett JR; Bonham VA
    Biol Rev Camb Philos Soc; 2004 May; 79(2):461-72. PubMed ID: 15191232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics.
    Li X; Wu HX; Southerton SG
    BMC Genomics; 2011 Oct; 12():480. PubMed ID: 21962175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.).
    Andersson S; Wang Y; Pönni R; Hänninen T; Mononen M; Ren H; Serimaa R; Saranpää P
    J Integr Plant Biol; 2015 Apr; 57(4):388-95. PubMed ID: 25740619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging.
    Gierlinger N; Luss S; König C; Konnerth J; Eder M; Fratzl P
    J Exp Bot; 2010; 61(2):587-95. PubMed ID: 20007198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.
    Clair B; Alméras T; Pilate G; Jullien D; Sugiyama J; Riekel C
    Plant Physiol; 2011 Jan; 155(1):562-70. PubMed ID: 21068364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques.
    Zhang Z; Ma J; Ji Z; Xu F
    Microsc Microanal; 2012 Dec; 18(6):1459-66. PubMed ID: 23237521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation.
    Donaldson LA; Knox JP
    Plant Physiol; 2012 Feb; 158(2):642-53. PubMed ID: 22147521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.
    Clair B; Alméras T; Pilate G; Jullien D; Sugiyama J; Riekel C
    Plant Physiol; 2010 Mar; 152(3):1650-8. PubMed ID: 20071605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.
    Li X; Yang X; Wu HX
    BMC Genomics; 2013 Nov; 14(1):768. PubMed ID: 24209714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy.
    Peng H; Salmén L; Stevanic JS; Lu J
    Planta; 2019 Jul; 250(1):163-171. PubMed ID: 30953149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).
    Al-Haddad JM; Kang KY; Mansfield SD; Telewski FW
    Tree Physiol; 2013 Apr; 33(4):365-73. PubMed ID: 23515474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization.
    Lichtenegger H; Reiterer A; Stanzl-Tschegg SE; Fratzl P
    J Struct Biol; 1999 Dec; 128(3):257-69. PubMed ID: 10633065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial microfibril arrangements in wood cell walls.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Planta; 2022 Sep; 256(4):75. PubMed ID: 36087126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pontamine fast scarlet 4B bifluorescence and measurements of cellulose microfibril angles.
    Thomas J; Idris NA; Collings DA
    J Microsc; 2017 Oct; 268(1):13-27. PubMed ID: 28654160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative Poisson ratio of crystalline cellulose in kraft cooked Norway spruce.
    Peura M; Grotkopp I; Lemke H; Vikkula A; Laine J; Müller M; Serimaa R
    Biomacromolecules; 2006 May; 7(5):1521-8. PubMed ID: 16677034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location and characterization of lignin in tracheid cell walls of radiata pine (Pinus radiata D. Don) compression woods.
    Zhang M; Lapierre C; Nouxman NL; Nieuwoudt MK; Smith BG; Chavan RR; McArdle BH; Harris PJ
    Plant Physiol Biochem; 2017 Sep; 118():187-198. PubMed ID: 28646704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution.
    Donaldson L; Radotić K; Kalauzi A; Djikanović D; Jeremić M
    J Struct Biol; 2010 Jan; 169(1):106-15. PubMed ID: 19747548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose lattice strains and stress transfer in native and delignified wood.
    Spies PA; Keplinger T; Horbelt N; Reppe F; Scoppola E; Eder M; Fratzl P; Burgert I; Rüggeberg M
    Carbohydr Polym; 2022 Nov; 296():119922. PubMed ID: 36087976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.