These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38553432)

  • 1. Mechanical Performance of Copper-Nanocluster-Polymer Nanolattices.
    Tang J; Liang H; Ren A; Ma L; Hao W; Yao Y; Zheng L; Li H; Li Q
    Adv Mater; 2024 Jun; 36(26):e2400080. PubMed ID: 38553432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical nanolattices printed using nanocluster-based photoresists.
    Li Q; Kulikowski J; Doan D; Tertuliano OA; Zeman CJ; Wang MM; Schatz GC; Gu XW
    Science; 2022 Nov; 378(6621):768-773. PubMed ID: 36395243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.
    Cheng H; Zhu X; Cheng X; Cai P; Liu J; Yao H; Zhang L; Duan J
    Nat Commun; 2023 Mar; 14(1):1243. PubMed ID: 36871035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Durable Ultralow-k Capacitors with Enhanced Breakdown Strength in Density-Variant Nanolattices.
    Kim MW; Lifson ML; Gallivan R; Greer JR; Kim BJ
    Adv Mater; 2023 Feb; 35(6):e2208409. PubMed ID: 36380720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centimetre-scale crack-free self-assembly for ultra-high tensile strength metallic nanolattices.
    Jiang Z; Pikul JH
    Nat Mater; 2021 Nov; 20(11):1512-1518. PubMed ID: 34140654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanolattices: An Emerging Class of Mechanical Metamaterials.
    Bauer J; Meza LR; Schaedler TA; Schwaiger R; Zheng X; Valdevit L
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28873250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials.
    Abou-Ali AM; Lee DW; Abu Al-Rub RK
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaching theoretical strength in glassy carbon nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth.
    Maggi A; Li H; Greer JR
    Acta Biomater; 2017 Nov; 63():294-305. PubMed ID: 28923538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plate-nanolattices at the theoretical limit of stiffness and strength.
    Crook C; Bauer J; Guell Izard A; Santos de Oliveira C; Martins de Souza E Silva J; Berger JB; Valdevit L
    Nat Commun; 2020 Mar; 11(1):1579. PubMed ID: 32221283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced mechanical performance of mSLA-printed biopolymer nanocomposites due to phase functionalization.
    Mondal D; Willett TL
    J Mech Behav Biomed Mater; 2022 Nov; 135():105450. PubMed ID: 36115176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anelasticity in thin-shell nanolattices.
    Chen IT; Poblete FR; Bagal A; Zhu Y; Chang CH
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2201589119. PubMed ID: 36095191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong and Lightweight Stereolithographically 3D-Printed Polymer Nanocomposites with Low Friction and High Toughness.
    Ávila-López MA; Bonilla-Cruz J; Méndez-Nonell J; Lara-Ceniceros TE
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Parameters for Subwavelength Transparent Conductive Nanolattices.
    Diaz Leon JJ; Feigenbaum E; Kobayashi NP; Han TY; Hiszpanski AM
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35360-35367. PubMed ID: 28960951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture toughness and hardness of in-office, 3D-printed ceramic brackets.
    Polychronis G; Papageorgiou SN; Riollo CS; Panayi N; Zinelis S; Eliades T
    Orthod Craniofac Res; 2023 Aug; 26(3):476-480. PubMed ID: 36648375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.