These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38553435)
1. Machine-learning-assisted and real-time-feedback-controlled growth of InAs/GaAs quantum dots. Shen C; Zhan W; Xin K; Li M; Sun Z; Cong H; Xu C; Tang J; Wu Z; Xu B; Wei Z; Xue C; Zhao C; Wang Z Nat Commun; 2024 Mar; 15(1):2724. PubMed ID: 38553435 [TBL] [Abstract][Full Text] [Related]
2. Universal Deoxidation of Semiconductor Substrates Assisted by Machine Learning and Real-Time Feedback Control. Shen C; Zhan W; Tang J; Wu Z; Xu B; Zhao C; Wang Z ACS Appl Mater Interfaces; 2024 Apr; 16(14):18213-18221. PubMed ID: 38554077 [TBL] [Abstract][Full Text] [Related]
3. In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots. Li MF; Yu Y; He JF; Wang LJ; Zhu Y; Shang XJ; Ni HQ; Niu ZC Nanoscale Res Lett; 2013 Feb; 8(1):86. PubMed ID: 23414094 [TBL] [Abstract][Full Text] [Related]
4. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers. Su XB; Ding Y; Ma B; Zhang KL; Chen ZS; Li JL; Cui XR; Xu YQ; Ni HQ; Niu ZC Nanoscale Res Lett; 2018 Feb; 13(1):59. PubMed ID: 29468483 [TBL] [Abstract][Full Text] [Related]
5. Effect of InAlGaAs and GaAs combination barrier thickness on the duration of dot formation in different layers of stacked InAs/GaAs quantum dot heterostructure grown by MBE. Halder N; Suseendran J; Chakrabarti S; Herrera M; Bonds M; Browning ND J Nanosci Nanotechnol; 2010 Aug; 10(8):5202-6. PubMed ID: 21125871 [TBL] [Abstract][Full Text] [Related]
6. Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots. Dai L; Bremner SP; Tan S; Wang S; Zhang G; Liu Z Nanoscale Res Lett; 2014; 9(1):278. PubMed ID: 24948897 [TBL] [Abstract][Full Text] [Related]
7. The evolution of self-assembled InAs/GaAs(001) quantum dots grown by growth-interrupted molecular beam epitaxy. Balzarotti A Nanotechnology; 2008 Dec; 19(50):505701. PubMed ID: 19942778 [TBL] [Abstract][Full Text] [Related]
8. Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography. Martín-Sánchez J; Alonso-González P; Herranz J; González Y; González L Nanotechnology; 2009 Mar; 20(12):125302. PubMed ID: 19420463 [TBL] [Abstract][Full Text] [Related]
9. Reduced Dislocation of GaAs Layer Grown on Ge-Buffered Si (001) Substrate Using Dislocation Filter Layers for an O-Band InAs/GaAs Quantum Dot Narrow-Ridge Laser. Du Y; Wei W; Xu B; Wang G; Li B; Miao Y; Zhao X; Kong Z; Lin H; Yu J; Su J; Dong Y; Wang W; Ye T; Zhang J; Radamson HH Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295932 [TBL] [Abstract][Full Text] [Related]
10. Morphology and optical properties of single- and multi-layer InAs quantum dots. Hsu CC; Hsu RQ; Wu YH J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S149-54. PubMed ID: 20576720 [TBL] [Abstract][Full Text] [Related]
11. Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots. Wang P; Pan W; Wu X; Liu J; Cao C; Wang S; Gong Q Nanoscale Res Lett; 2016 Dec; 11(1):280. PubMed ID: 27255900 [TBL] [Abstract][Full Text] [Related]
12. InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers. Wang Y; Ma B; Li J; Liu Z; Jiang C; Li C; Liu H; Zhang Y; Zhang Y; Wang Q; Xie X; Qiu X; Ren X; Wei X Opt Express; 2023 Jan; 31(3):4862-4872. PubMed ID: 36785443 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled growth of GaAs anti quantum dots in InAs matrix by migration enhanced molecular beam epitaxy. Lee EH; Song JD; Kim SY; Han IK; Chang SK; Lee JI J Nanosci Nanotechnol; 2012 Feb; 12(2):1480-2. PubMed ID: 22629983 [TBL] [Abstract][Full Text] [Related]
15. Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate. Azeza B; Hadj Alouane MH; Ilahi B; Patriarche G; Sfaxi L; Fouzri A; Maaref H; M'ghaieth R Materials (Basel); 2015 Jul; 8(7):4544-4552. PubMed ID: 28793455 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Photoluminescence of 1.3 μm InAs Quantum Dots Grown on Ultrathin GaAs Buffer/Si Templates by Suppressing Interfacial Defect Emission. Kim Y; Chu RJ; Ryu G; Woo S; Lung QND; Ahn DH; Han JH; Choi WJ; Jung D ACS Appl Mater Interfaces; 2022 Oct; 14(39):45051-45058. PubMed ID: 36162121 [TBL] [Abstract][Full Text] [Related]
17. Droplet epitaxy of InGaN quantum dots on Si (111) by plasma-assisted molecular beam epitaxy. Nurzal N; Hsu TY; Susanto I; Yu IS Discov Nano; 2023 Apr; 18(1):60. PubMed ID: 37382746 [TBL] [Abstract][Full Text] [Related]
18. Self-assembled Bismuth Selenide (Bi Claro MS; Levy I; Gangopadhyay A; Smith DJ; Tamargo MC Sci Rep; 2019 Mar; 9(1):3370. PubMed ID: 30833604 [TBL] [Abstract][Full Text] [Related]
19. Band alignment tailoring of InAs1-xSbx/GaAs quantum dots: control of type I to type II transition. He J; Reyner CJ; Liang BL; Nunna K; Huffaker DL; Pavarelli N; Gradkowski K; Ochalski TJ; Huyet G; Dorogan VG; Mazur YI; Salamo GJ Nano Lett; 2010 Aug; 10(8):3052-6. PubMed ID: 20698619 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of the interplay between InAs quantum dots and wetting layer during the GaAs capping process. González D; Braza V; Utrilla AD; Gonzalo A; Reyes DF; Ben T; Guzman A; Hierro A; Ulloa JM Nanotechnology; 2017 Oct; 28(42):425702. PubMed ID: 28770809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]