These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38553946)

  • 1. Cryo-EM structure of the Slo1 potassium channel with the auxiliary γ1 subunit suggests a mechanism for depolarization-independent activation.
    Redhardt M; Raunser S; Raisch T
    FEBS Lett; 2024 Apr; 598(8):875-888. PubMed ID: 38553946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual allosteric modulation of voltage and calcium sensitivities of the Slo1-LRRC channel complex.
    Yamanouchi D; Kasuya G; Nakajo K; Kise Y; Nureki O
    Mol Cell; 2023 Dec; 83(24):4555-4569.e4. PubMed ID: 38035882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels.
    Tian Y; Ullrich F; Xu R; Heinemann SH; Hou S; Hoshi T
    J Gen Physiol; 2015 Apr; 145(4):331-43. PubMed ID: 25825171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structures of the human Slo1 K
    Tao X; MacKinnon R
    Elife; 2019 Dec; 8():. PubMed ID: 31815672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary γ subunits.
    Li Q; Fan F; Kwak HR; Yan J
    J Gen Physiol; 2015 Jun; 145(6):543-54. PubMed ID: 26009545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of BK channel gating by the ß2 subunit involves both membrane-spanning and cytoplasmic domains of Slo1.
    Lee US; Shi J; Cui J
    J Neurosci; 2010 Dec; 30(48):16170-9. PubMed ID: 21123563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alcohol modulation of BK channel gating depends on β subunit composition.
    Kuntamallappanavar G; Dopico AM
    J Gen Physiol; 2016 Nov; 148(5):419-440. PubMed ID: 27799321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory γ1 subunits defy symmetry in functional modulation of BK channels.
    Gonzalez-Perez V; Ben Johny M; Xia XM; Lingle CJ
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9923-9928. PubMed ID: 30224470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transduction of voltage and Ca2+ signals by Slo1 BK channels.
    Hoshi T; Pantazis A; Olcese R
    Physiology (Bethesda); 2013 May; 28(3):172-89. PubMed ID: 23636263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The beta 1 subunit of L-type voltage-gated Ca2+ channels independently binds to and inhibits the gating of large-conductance Ca2+-activated K+ channels.
    Zou S; Jha S; Kim EY; Dryer SE
    Mol Pharmacol; 2008 Feb; 73(2):369-78. PubMed ID: 17989350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains.
    Yang H; Shi J; Zhang G; Yang J; Delaloye K; Cui J
    Nat Struct Mol Biol; 2008 Nov; 15(11):1152-9. PubMed ID: 18931675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of Slo1 K+ channels with and without the gating ring.
    Budelli G; Geng Y; Butler A; Magleby KL; Salkoff L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16657-62. PubMed ID: 24067659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits.
    Liu HW; Hou PP; Guo XY; Zhao ZW; Hu B; Li X; Wang LY; Ding JP; Wang S
    J Biol Chem; 2014 Jun; 289(24):16914-23. PubMed ID: 24764303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The leucine-rich repeat domains of BK channel auxiliary γ subunits regulate their expression, trafficking, and channel-modulation functions.
    Chen G; Li Q; Yan J
    J Biol Chem; 2022 Mar; 298(3):101664. PubMed ID: 35104503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.
    Hoshi T; Tian Y; Xu R; Heinemann SH; Hou S
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4822-7. PubMed ID: 23487786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid.
    Hoshi T; Xu R; Hou S; Heinemann SH; Tian Y
    J Gen Physiol; 2013 Nov; 142(5):507-22. PubMed ID: 24127525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of pharmacological activation of BK channels.
    Gessner G; Cui YM; Otani Y; Ohwada T; Soom M; Hoshi T; Heinemann SH
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3552-7. PubMed ID: 22331907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threading the biophysics of mammalian Slo1 channels onto structures of an invertebrate Slo1 channel.
    Zhou Y; Yang H; Cui J; Lingle CJ
    J Gen Physiol; 2017 Nov; 149(11):985-1007. PubMed ID: 29025867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of Ca
    Geng Y; Deng Z; Zhang G; Budelli G; Butler A; Yuan P; Cui J; Salkoff L; Magleby KL
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14512-14521. PubMed ID: 32513714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes.
    Kim EY; Alvarez-Baron CP; Dryer SE
    Mol Pharmacol; 2009 Mar; 75(3):466-77. PubMed ID: 19052171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.