These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38554084)
1. Digitally Controlled Printing of Bioink Barriers for Paper-Based Analytical Devices: An Environmentally Friendly One-Step Approach. Romanholo PVV; de Andrade LM; Silva-Neto HA; Coltro WKT; Sgobbi LF Anal Chem; 2024 Apr; 96(14):5349-5356. PubMed ID: 38554084 [TBL] [Abstract][Full Text] [Related]
2. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related]
3. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851 [TBL] [Abstract][Full Text] [Related]
4. 3D-PAD: Paper-Based Analytical Devices with Integrated Three-Dimensional Features. Ng JS; Hashimoto M Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33802637 [TBL] [Abstract][Full Text] [Related]
5. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Dornelas KL; Dossi N; Piccin E Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806 [TBL] [Abstract][Full Text] [Related]
6. Easy and rapid pen-on-paper protocol for fabrication of paper analytical devices using inexpensive acrylate-based plastic welding repair kit. Aguilar LG; Petroni JM; Ferreira VS; Lucca BG Talanta; 2020 Nov; 219():121246. PubMed ID: 32887137 [TBL] [Abstract][Full Text] [Related]
7. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper. Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM Talanta; 2015 Nov; 144():289-93. PubMed ID: 26452824 [TBL] [Abstract][Full Text] [Related]
8. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices. Liu M; Zhang C; Liu F Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382 [TBL] [Abstract][Full Text] [Related]
9. Simple, fast, and instrumentless fabrication of paper analytical devices by novel contact stamping method based on acrylic varnish and 3D printing. de Araujo TA; de Moraes NC; Petroni JM; Ferreira VS; Lucca BG Mikrochim Acta; 2021 Nov; 188(12):437. PubMed ID: 34837526 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament. Espinosa A; Diaz J; Vazquez E; Acosta L; Santiago A; Cunci L Talanta Open; 2022 Dec; 6():. PubMed ID: 36093430 [TBL] [Abstract][Full Text] [Related]
11. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine. Yan Y; Huang X; Yuan L; Tang Y; Zhu W; Du H; Nie J; Zhang L; Liao S; Tang X; Zhang Y Anal Bioanal Chem; 2024 Jul; 416(18):4131-4141. PubMed ID: 38780654 [TBL] [Abstract][Full Text] [Related]
12. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks. Nuchtavorn N; Macka M Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of paper-based analytical devices using stencil-printed glass varnish barriers for colorimetric detection of salivary α-amylase. Silva-Neto HA; Jaime JC; Rocha DS; Sgobbi LF; Coltro WKT Anal Chim Acta; 2024 Apr; 1297():342336. PubMed ID: 38438226 [TBL] [Abstract][Full Text] [Related]
14. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique. Wu P; Zhang C Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508 [TBL] [Abstract][Full Text] [Related]
15. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Cardoso TMG; de Souza FR; Garcia PT; Rabelo D; Henry CS; Coltro WKT Anal Chim Acta; 2017 Jun; 974():63-68. PubMed ID: 28535882 [TBL] [Abstract][Full Text] [Related]
16. A Straightforward Approach for 3D Bacterial Printing. Lehner BAE; Schmieden DT; Meyer AS ACS Synth Biol; 2017 Jul; 6(7):1124-1130. PubMed ID: 28225616 [TBL] [Abstract][Full Text] [Related]
17. Alternative Patterning Methods for Paper-based Analytical Devices Using Nail Polish as a Hydrophobic Reagent. Satarpai T; Siripinyanond A Anal Sci; 2018; 34(5):605-612. PubMed ID: 29743434 [TBL] [Abstract][Full Text] [Related]
18. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes. de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573 [TBL] [Abstract][Full Text] [Related]
19. Reprint of 'Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper'. Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM Talanta; 2015 Dec; 145():73-7. PubMed ID: 26459446 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. Komatsu T; Maeki M; Ishida A; Tani H; Tokeshi M Anal Sci; 2018; 34(1):39-44. PubMed ID: 29321455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]