BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38554273)

  • 1. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters.
    Wang W; Xiang Y; Yin G; Hu S; Cheng J; Chen J; Du G; Kang Z; Wang Y
    J Agric Food Chem; 2024 Apr; 72(14):8006-8017. PubMed ID: 38554273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid].
    Wang L; Yan S; Yang T; Xu M; Zhang X; Shao M; Li H; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4314-4328. PubMed ID: 34984877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient De Novo Biosynthesis of Heme by Membrane Engineering in
    Geng Z; Ge J; Cui W; Zhou H; Deng J; Xu B
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production.
    Zhang J; Kang Z; Ding W; Chen J; Du G
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1252-62. PubMed ID: 26637361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield.
    Yang P; Liu W; Cheng X; Wang J; Wang Q; Qi Q
    Appl Environ Microbiol; 2016 May; 82(9):2709-2717. PubMed ID: 26921424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Improvement of 5-Aminolevulinic Acid Production with Synthetic Scaffolds and System Pathway Engineering.
    Luo Z; Pan F; Zhu Y; Du S; Yan Y; Wang R; Li S; Xu H
    ACS Synth Biol; 2022 Aug; 11(8):2766-2778. PubMed ID: 35939037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli.
    Shih IT; Yi YC; Ng IS
    Appl Biochem Biotechnol; 2021 Sep; 193(9):2858-2871. PubMed ID: 33860878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system.
    Fu W; Lin J; Cen P
    Bioresour Technol; 2008 Jul; 99(11):4864-70. PubMed ID: 17993272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli.
    Zhu C; Chen J; Wang Y; Wang L; Guo X; Chen N; Zheng P; Sun J; Ma Y
    Biotechnol Bioeng; 2019 Aug; 116(8):2018-2028. PubMed ID: 30934113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli.
    Li F; Wang Y; Gong K; Wang Q; Liang Q; Qi Q
    FEMS Microbiol Lett; 2014 Jan; 350(2):209-15. PubMed ID: 24188714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli.
    Tan SI; You SC; Shih IT; Ng IS
    J Biosci Bioeng; 2020 Apr; 129(4):387-394. PubMed ID: 31678067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inducers on the production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Xiaoxia L; Jianping L; Peilin C
    Prep Biochem Biotechnol; 2006; 36(3):223-33. PubMed ID: 16707333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective 5-aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110.
    Ting WW; Ng IS
    Biotechnol Bioeng; 2023 Feb; 120(2):583-592. PubMed ID: 36302745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Synthesis of 5-Aminolevulinic Acid and Its Coproduction with Polyhydroxybutyrate.
    Li T; Guo YY; Qiao GQ; Chen GQ
    ACS Synth Biol; 2016 Nov; 5(11):1264-1274. PubMed ID: 27238205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene.
    Choi HP; Lee YM; Yun CW; Sung HC
    J Microbiol Biotechnol; 2008 Jun; 18(6):1136-40. PubMed ID: 18600059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering to improve 5-aminolevulinic acid production.
    Kang Z; Wang Y; Wang Q; Qi Q
    Bioeng Bugs; 2011; 2(6):342-5. PubMed ID: 22008939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Kang Z; Chen J; Du G
    Sci Rep; 2015 Feb; 5():8584. PubMed ID: 25716896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.