These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38554328)

  • 1. Prognostic value of radiomic features in patients with esophageal cancer treated with chemoradiotherapy.
    Jinnouchi H; Yamashita H; Nozawa Y; Nakamoto T; Sawayanagi S; Katano A
    J Cancer Res Ther; 2024 Jan; 20(1):243-248. PubMed ID: 38554328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone-beam computed-tomography-based delta-radiomic analysis for investigating prognostic power for esophageal squamous cell cancer patients undergoing concurrent chemoradiotherapy.
    Nakamoto T; Yamashita H; Jinnouchi H; Nawa K; Imae T; Takenaka S; Aoki A; Ohta T; Ozaki S; Nozawa Y; Nakagawa K
    Phys Med; 2024 Jan; 117():103182. PubMed ID: 38086310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer.
    Larue RTHM; Klaassen R; Jochems A; Leijenaar RTH; Hulshof MCCM; van Berge Henegouwen MI; Schreurs WMJ; Sosef MN; van Elmpt W; van Laarhoven HWM; Lambin P
    Acta Oncol; 2018 Nov; 57(11):1475-1481. PubMed ID: 30067421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of an [
    Takahashi N; Tanaka S; Umezawa R; Takanami K; Takeda K; Yamamoto T; Suzuki Y; Katsuta Y; Kadoya N; Jingu K
    Acta Oncol; 2023 Feb; 62(2):159-165. PubMed ID: 36794365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a prognostic nomogram for malignant esophageal fistula based on radiomics and clinical factors.
    Zhu C; Ding J; Wang S; Qiu Q; Ji Y; Wang L
    Thorac Cancer; 2021 Dec; 12(23):3110-3120. PubMed ID: 34647417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT radiomics features of meso-esophageal fat in predicting overall survival of patients with locally advanced esophageal squamous cell carcinoma treated by definitive chemoradiotherapy.
    Yan S; Li FP; Jian L; Zhu HT; Zhao B; Li XT; Shi YJ; Sun YS
    BMC Cancer; 2023 May; 23(1):477. PubMed ID: 37231388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computed tomography-based radiomic analysis for prediction of treatment response to salvage chemoradiotherapy for locoregional lymph node recurrence after curative esophagectomy.
    Gu L; Liu Y; Guo X; Tian Y; Ye H; Zhou S; Gao F
    J Appl Clin Med Phys; 2021 Nov; 22(11):71-79. PubMed ID: 34614265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostic value of the radiomics-based model in progression-free survival of hypopharyngeal cancer treated with chemoradiation.
    Mo X; Wu X; Dong D; Guo B; Liang C; Luo X; Zhang B; Zhang L; Dong Y; Lian Z; Liu J; Pei S; Huang W; Ouyang F; Tian J; Zhang S
    Eur Radiol; 2020 Feb; 30(2):833-843. PubMed ID: 31673835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH
    Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel CT-based radiomics model for predicting response and prognosis of chemoradiotherapy in esophageal squamous cell carcinoma.
    Kasai A; Miyoshi J; Sato Y; Okamoto K; Miyamoto H; Kawanaka T; Tonoiso C; Harada M; Goto M; Yoshida T; Haga A; Takayama T
    Sci Rep; 2024 Jan; 14(1):2039. PubMed ID: 38263395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining the radiomic features and traditional parameters of
    Chen YH; Lue KH; Chu SC; Chang BS; Wang LY; Liu DW; Liu SH; Chao YK; Chan SC
    Ann Nucl Med; 2019 Sep; 33(9):657-670. PubMed ID: 31218571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a radiomics-based model to predict local progression-free survival after chemo-radiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Chen YY; Huang WZ; Wu SX; Huang SF; Xu HY; Xue RL; Du ZS; Li XY; Lin LX; Huang HC
    Radiat Oncol; 2021 Oct; 16(1):201. PubMed ID: 34641928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer.
    Iwashita K; Kubota H; Nishioka R; Emoto Y; Kawahara D; Ishihara T; Miyawaki D; Nishibuchi I; Nagata Y; Sasaki R
    Anticancer Res; 2023 Apr; 43(4):1749-1760. PubMed ID: 36974798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.
    Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C
    Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostic value of pre-therapeutic FDG-PET radiomic analysis in gastro-esophageal junction cancer.
    Amrane K; Thuillier P; Bourhis D; Le Meur C; Quere C; Leclere JC; Ferec M; Jestin-Le Tallec V; Doucet L; Alemany P; Salaun PY; Metges JP; Schick U; Abgral R
    Sci Rep; 2023 Apr; 13(1):5789. PubMed ID: 37031233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures.
    Cui Y; Li Z; Xiang M; Han D; Yin Y; Ma C
    Radiat Oncol; 2022 Dec; 17(1):212. PubMed ID: 36575480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of distant metastasis in esophageal cancer using a radiomics-clinical model.
    Zhu C; Mu F; Wang S; Qiu Q; Wang S; Wang L
    Eur J Med Res; 2022 Dec; 27(1):272. PubMed ID: 36463269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gap before real clinical application of imaging-based machine-learning and radiomic models for chemoradiation outcome prediction in esophageal cancer: a systematic review and meta-analysis.
    Yang Z; Gong J; Li J; Sun H; Pan Y; Zhao L
    Int J Surg; 2023 Aug; 109(8):2451-2466. PubMed ID: 37463039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a
    Liu H; Cui Y; Chang C; Zhou Z; Zhang Y; Ma C; Yin Y; Wang R
    BMC Cancer; 2024 Jan; 24(1):150. PubMed ID: 38291351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CT-based radiomics combined with hematologic parameters for survival prediction in locally advanced esophageal cancer patients receiving definitive chemoradiotherapy.
    Cui J; Zhang D; Gao Y; Duan J; Wang L; Li L; Yuan S
    Insights Imaging; 2024 Mar; 15(1):87. PubMed ID: 38523188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.