These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38555293)
1. Dynamics of the time-fractional reaction-diffusion coupled equations in biological and chemical processes. Ghafoor A; Fiaz M; Hussain M; Ullah A; Ismail EAA; Awwad FA Sci Rep; 2024 Mar; 14(1):7549. PubMed ID: 38555293 [TBL] [Abstract][Full Text] [Related]
2. Analysis of nonlinear Burgers equation with time fractional Atangana-Baleanu-Caputo derivative. Ghafoor A; Fiaz M; Shah K; Abdeljawad T Heliyon; 2024 Jul; 10(13):e33842. PubMed ID: 39055819 [TBL] [Abstract][Full Text] [Related]
3. Haar wavelets method for solving class of coupled systems of linear fractional Fredholm integro-differential equations. Darweesh A; Al-Khaled K; Al-Yaqeen OA Heliyon; 2023 Sep; 9(9):e19717. PubMed ID: 37810092 [TBL] [Abstract][Full Text] [Related]
4. A hybrid yang transform adomian decomposition method for solving time-fractional nonlinear partial differential equation. Bekela AS; Deresse AT BMC Res Notes; 2024 Aug; 17(1):226. PubMed ID: 39148140 [TBL] [Abstract][Full Text] [Related]
5. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations. Thamareerat N; Luadsong A; Aschariyaphotha N Springerplus; 2016; 5():417. PubMed ID: 27099822 [TBL] [Abstract][Full Text] [Related]
6. Computation of solution to fractional order partial reaction diffusion equations. Gul H; Alrabaiah H; Ali S; Shah K; Muhammad S J Adv Res; 2020 Sep; 25():31-38. PubMed ID: 32922971 [TBL] [Abstract][Full Text] [Related]
7. Explicit scheme for solving variable-order time-fractional initial boundary value problems. Kanwal A; Boulaaras S; Shafqat R; Taufeeq B; Ur Rahman M Sci Rep; 2024 Mar; 14(1):5396. PubMed ID: 38443513 [TBL] [Abstract][Full Text] [Related]
8. Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative. Arshad S; Baleanu D; Huang J; Al Qurashi MM; Tang Y; Zhao Y Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265411 [TBL] [Abstract][Full Text] [Related]
9. An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations. Kumar M Int J Appl Comput Math; 2022; 8(5):262. PubMed ID: 36185949 [TBL] [Abstract][Full Text] [Related]
10. Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation. Yu Q; Liu F; Turner I; Burrage K Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120150. PubMed ID: 23547227 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear analysis of a four-dimensional fractional hyper-chaotic system based on general Riemann-Liouville-Caputo fractal-fractional derivative. Pan Y Nonlinear Dyn; 2021; 106(4):3615-3636. PubMed ID: 34690431 [TBL] [Abstract][Full Text] [Related]
12. A Discretization Approach for the Nonlinear Fractional Logistic Equation. Izadi M; Srivastava HM Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287093 [TBL] [Abstract][Full Text] [Related]
13. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations. Khader MM J Comput Nonlinear Dyn; 2013 Oct; 8(4):41018-NaN. PubMed ID: 24891846 [TBL] [Abstract][Full Text] [Related]
14. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods. Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705 [TBL] [Abstract][Full Text] [Related]
15. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix. Xie J; Huang Q; Yang X Springerplus; 2016; 5(1):1149. PubMed ID: 27504247 [TBL] [Abstract][Full Text] [Related]
16. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method. Bahşı AK; Yalçınbaş S Springerplus; 2016; 5(1):1375. PubMed ID: 27610294 [TBL] [Abstract][Full Text] [Related]
17. Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head. Izadi M; Atangana A Sci Rep; 2024 Feb; 14(1):3466. PubMed ID: 38342935 [TBL] [Abstract][Full Text] [Related]
18. The Space-Time Coupled Fractional Cattaneo-Friedrich Maxwell Model with Caputo Derivatives. Khan M; Rasheed A Int J Appl Comput Math; 2021; 7(3):112. PubMed ID: 34056052 [TBL] [Abstract][Full Text] [Related]
19. Analytical solution of fuzzy heat problem in two-dimensional case under Caputo-type fractional derivative. Nadeem M; Yilin C; Kumar D; Alsayyad Y PLoS One; 2024; 19(4):e0301719. PubMed ID: 38640130 [TBL] [Abstract][Full Text] [Related]
20. New insight into the nano-fluid flow in a channel with tempered fractional operators. Fenwick J; Liu F; Feng L Nanotechnology; 2023 Dec; 35(8):. PubMed ID: 37972402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]