These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 3855538)
1. The presence of a copper/zinc superoxide dismutase in the bacterium Photobacterium leiognathi: a likely case of gene transfer from eukaryotes to prokaryotes. Bannister JV; Parker MW Proc Natl Acad Sci U S A; 1985 Jan; 82(1):149-52. PubMed ID: 3855538 [TBL] [Abstract][Full Text] [Related]
2. The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria. Steffens GJ; Bannister JV; Bannister WH; Flohé L; Günzler WA; Kim SM; Otting F Hoppe Seylers Z Physiol Chem; 1983 Jun; 364(6):675-90. PubMed ID: 6884993 [TBL] [Abstract][Full Text] [Related]
3. The amino acid sequences of the copper/zinc superoxide dismutases from swordfish and Photobacter leiognathi confirm the predictions made from the compositions. Cornish-Bowden A Eur J Biochem; 1985 Sep; 151(2):333-5. PubMed ID: 4029137 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Bannister WH; Bannister JV; Barra D; Bond J; Bossa F Free Radic Res Commun; 1991; 12-13 Pt 1():349-61. PubMed ID: 2071039 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont Photobacter leiognathi. The close relationship between bacteriocuprein and the copper-zinc superoxide dismutase of teleost fishes. Martin JP; Fridovich I J Biol Chem; 1981 Jun; 256(12):6080-9. PubMed ID: 6787049 [No Abstract] [Full Text] [Related]
6. Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase. Bordo D; Matak D; Djinovic-Carugo K; Rosano C; Pesce A; Bolognesi M; Stroppolo ME; Falconi M; Battistoni A; Desideri A J Mol Biol; 1999 Jan; 285(1):283-96. PubMed ID: 9878406 [TBL] [Abstract][Full Text] [Related]
8. Copper-zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme. Steinman HM J Biol Chem; 1982 Sep; 257(17):10283-93. PubMed ID: 7050107 [TBL] [Abstract][Full Text] [Related]
9. Bacteriocuprein superoxide dismutase of Photobacterium leiognathi. Isolation and sequence of the gene and evidence for a precursor form. Steinman HM J Biol Chem; 1987 Feb; 262(4):1882-7. PubMed ID: 3805055 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic characterization of a Cu,Zn superoxide dismutase from Photobacterium leiognathi. Redford SM; McRee DE; Getzoff ED; Steinman HM; Tainer JA J Mol Biol; 1990 Apr; 212(3):449-51. PubMed ID: 2325128 [TBL] [Abstract][Full Text] [Related]
11. The amino-acid sequence of copper/zinc superoxide dismutase from swordfish liver. Comparison of copper/zinc superoxide dismutase sequences. Rocha HA; Bannister WH; Bannister JV Eur J Biochem; 1984 Dec; 145(3):477-84. PubMed ID: 6510412 [TBL] [Abstract][Full Text] [Related]
12. Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase. Stroppolo ME; Pesce A; D'Orazio M; O'Neill P; Bordo D; Rosano C; Milani M; Battistoni A; Bolognesi M; Desideri A J Mol Biol; 2001 May; 308(3):555-63. PubMed ID: 11327787 [TBL] [Abstract][Full Text] [Related]
13. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme. Stroppolo ME; Sette M; O'Neill P; Polizio F; Cambria MT; Desideri A Biochemistry; 1998 Sep; 37(35):12287-92. PubMed ID: 9724543 [TBL] [Abstract][Full Text] [Related]
14. The dimeric assembly of Photobacterium leiognathi and Salmonella typhimurium SodC1 Cu,Zn superoxide dismutases is affected differently by active site demetallation and pH: an analytical ultracentrifuge study. Catacchio B; D'Orazio M; Battistoni A; Chiancone E Arch Biochem Biophys; 2008 Mar; 471(1):77-84. PubMed ID: 18179768 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic characterization of recombinant Cu,Zn superoxide dismutase from Photobacterium leiognathi expressed in Escherichia coli: evidence for a novel catalytic copper binding site. Foti D; Lo Curto B; Cuzzocrea G; Stroppolo ME; Polizio F; Venanzi M; Desideri A Biochemistry; 1997 Jun; 36(23):7109-13. PubMed ID: 9188710 [TBL] [Abstract][Full Text] [Related]
16. Evidence of stable monomeric species in the unfolding of Cu,Zn superoxide dismutase from Photobacterium leiognathi. Malvezzi-Campeggi F; Stroppolo ME; Mei G; Rosato N; Desideri A Arch Biochem Biophys; 1999 Oct; 370(2):201-7. PubMed ID: 10510278 [TBL] [Abstract][Full Text] [Related]
17. On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases. Stroppolo ME; Nuzzo S; Pesce A; Rosano C; Battistoni A; Bolognesi M; Mobilio S; Desideri A Biochem Biophys Res Commun; 1998 Aug; 249(3):579-82. PubMed ID: 9731178 [TBL] [Abstract][Full Text] [Related]
18. Induction of superoxide dismutases in Photobacterium leiognathi. Kobayashi H; Tonokawa H; Fukasawa S; Yamakura F Free Radic Res Commun; 1991; 12-13 Pt 1():437-41. PubMed ID: 2071047 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the spectroscopic properties of the Cu,Co cluster in a prokaryotic superoxide dismutase. Venerini F; Sette M; Stroppolo ME; De Martino A; Desideri A Arch Biochem Biophys; 1999 Jun; 366(1):70-4. PubMed ID: 10334865 [TBL] [Abstract][Full Text] [Related]
20. Difference between amino acid residues in the metal-ligand environments of iron- and manganese-superoxide dismutases. Isobe T; Fang YI; Muno D; Okuyama T; Ohmori D; Yamakura F Biochem Int; 1988 Mar; 16(3):495-501. PubMed ID: 3382418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]