These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 38555441)
1. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Snoeck S; Guidi C; De Mey M Microb Cell Fact; 2024 Mar; 23(1):96. PubMed ID: 38555441 [TBL] [Abstract][Full Text] [Related]
2. Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants. Moxley WC; Eiteman MA Appl Environ Microbiol; 2021 Jun; 87(13):e0048721. PubMed ID: 33863707 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Kumar R; Shimizu K Microb Cell Fact; 2011 Jan; 10():3. PubMed ID: 21272324 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Escherichia coli for production of butyric acid. Saini M; Wang ZW; Chiang CJ; Chao YP J Agric Food Chem; 2014 May; 62(19):4342-8. PubMed ID: 24773075 [TBL] [Abstract][Full Text] [Related]
6. Systems Metabolic Engineering of Escherichia coli. Choi KR; Shin JH; Cho JS; Yang D; Lee SY EcoSal Plus; 2016 May; 7(1):. PubMed ID: 27223822 [TBL] [Abstract][Full Text] [Related]
7. Metabolic stress constrains microbial L-cysteine production in Escherichia coli by accelerating transposition through mobile genetic elements. Heieck K; Arnold ND; Brück TB Microb Cell Fact; 2023 Jan; 22(1):10. PubMed ID: 36642733 [TBL] [Abstract][Full Text] [Related]
9. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Harder BJ; Bettenbrock K; Klamt S Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589 [TBL] [Abstract][Full Text] [Related]
10. High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli. Matos CF; Branston SD; Albiniak A; Dhanoya A; Freedman RB; Keshavarz-Moore E; Robinson C Biotechnol Bioeng; 2012 Oct; 109(10):2533-42. PubMed ID: 22539025 [TBL] [Abstract][Full Text] [Related]
11. Omics-guided bacterial engineering of Escherichia coli ER2566 for recombinant protein expression. Zhou L; Ma Y; Wang K; Chen T; Huang Y; Liu L; Li Y; Sun J; Hu Y; Li T; Kong Z; Wang Y; Zheng Q; Zhao Q; Zhang J; Gu Y; Yu H; Xia N; Li S Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):853-865. PubMed ID: 36539564 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Escherichia coli to improve recombinant protein production. Liu M; Feng X; Ding Y; Zhao G; Liu H; Xian M Appl Microbiol Biotechnol; 2015 Dec; 99(24):10367-77. PubMed ID: 26399416 [TBL] [Abstract][Full Text] [Related]
13. Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives. Baeshen MN; Al-Hejin AM; Bora RS; Ahmed MM; Ramadan HA; Saini KS; Baeshen NA; Redwan EM J Microbiol Biotechnol; 2015 Jul; 25(7):953-62. PubMed ID: 25737124 [TBL] [Abstract][Full Text] [Related]
14. Unlocking the bacterial domain for industrial biotechnology applications using universal parts and tools. De Wannemaeker L; Bervoets I; De Mey M Biotechnol Adv; 2022 Nov; 60():108028. PubMed ID: 36031082 [TBL] [Abstract][Full Text] [Related]
15. Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies. Jiang P; Fang H; Zhao J; Dong H; Jin Z; Zhang D Microb Cell Fact; 2020 Jun; 19(1):118. PubMed ID: 32487216 [TBL] [Abstract][Full Text] [Related]
16. An inverse metabolic engineering approach for the design of an improved host platform for over-expression of recombinant proteins in Escherichia coli. Ghosh C; Gupta R; Mukherjee KJ Microb Cell Fact; 2012 Jul; 11():93. PubMed ID: 22759404 [TBL] [Abstract][Full Text] [Related]
17. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Zhang R; Cao Y; Liu W; Xian M; Liu H Microb Cell Fact; 2017 Dec; 16(1):227. PubMed ID: 29258595 [TBL] [Abstract][Full Text] [Related]
18. Improving alkane synthesis in Escherichia coli via metabolic engineering. Song X; Yu H; Zhu K Appl Microbiol Biotechnol; 2016 Jan; 100(2):757-67. PubMed ID: 26476644 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering for improving L-tryptophan production in Escherichia coli. Niu H; Li R; Liang Q; Qi Q; Li Q; Gu P J Ind Microbiol Biotechnol; 2019 Jan; 46(1):55-65. PubMed ID: 30426284 [TBL] [Abstract][Full Text] [Related]
20. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Frey AD; Shepherd M; Jokipii-Lukkari S; Häggman H; Kallio PT Adv Microb Physiol; 2011; 58():81-139. PubMed ID: 21722792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]