These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38555493)

  • 21. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 22. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions.
    Prickett AR; Barkas N; McCole RB; Hughes S; Amante SM; Schulz R; Oakey RJ
    Genome Res; 2013 Oct; 23(10):1624-35. PubMed ID: 23804403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting CTCF-mediated chromatin loops using CTCF-MP.
    Zhang R; Wang Y; Yang Y; Zhang Y; Ma J
    Bioinformatics; 2018 Jul; 34(13):i133-i141. PubMed ID: 29949986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity of cohesin-chromatin association to high-salt treatment corroborates non-topological mode of loop extrusion.
    Golov AK; Golova AV; Gavrilov AA; Razin SV
    Epigenetics Chromatin; 2021 Jul; 14(1):36. PubMed ID: 34321070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural basis for cohesin-CTCF-anchored loops.
    Li Y; Haarhuis JHI; Sedeño Cacciatore Á; Oldenkamp R; van Ruiten MS; Willems L; Teunissen H; Muir KW; de Wit E; Rowland BD; Panne D
    Nature; 2020 Feb; 578(7795):472-476. PubMed ID: 31905366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning.
    Wu H; Zhou B; Zhou H; Zhang P; Wang M
    Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CharID: a two-step model for universal prediction of interactions between chromatin accessible regions.
    Shen Y; Zhong Q; Liu T; Wen Z; Shen W; Li L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35077535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeepLUCIA: predicting tissue-specific chromatin loops using Deep Learning-based Universal Chromatin Interaction Annotator.
    Yang D; Chung T; Kim D
    Bioinformatics; 2022 Jul; 38(14):3501-3512. PubMed ID: 35640981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A WIZ/Cohesin/CTCF Complex Anchors DNA Loops to Define Gene Expression and Cell Identity.
    Justice M; Carico ZM; Stefan HC; Dowen JM
    Cell Rep; 2020 Apr; 31(2):107503. PubMed ID: 32294452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CTCF and R-loops are boundaries of cohesin-mediated DNA looping.
    Zhang H; Shi Z; Banigan EJ; Kim Y; Yu H; Bai XC; Finkelstein IJ
    Mol Cell; 2023 Aug; 83(16):2856-2871.e8. PubMed ID: 37536339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CTCF and Its Partners: Shaper of 3D Genome during Development.
    Sun X; Zhang J; Cao C
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bio-Docklets: virtualization containers for single-step execution of NGS pipelines.
    Kim B; Ali T; Lijeron C; Afgan E; Krampis K
    Gigascience; 2017 Aug; 6(8):1-7. PubMed ID: 28854616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study on chromatin loop callers using Hi-C data reveals their effectiveness.
    Chowdhury HMAM; Boult T; Oluwadare O
    BMC Bioinformatics; 2024 Mar; 25(1):123. PubMed ID: 38515011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry.
    Zhang M; Huang H; Li J; Wu Q
    Cell Rep; 2024 Jan; 43(1):113663. PubMed ID: 38206813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review on deep learning applications in highly multiplexed tissue imaging data analysis.
    Zidane M; Makky A; Bruhns M; Rochwarger A; Babaei S; Claassen M; Schürch CM
    Front Bioinform; 2023; 3():1159381. PubMed ID: 37564726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders.
    Uusküla-Reimand L; Hou H; Samavarchi-Tehrani P; Rudan MV; Liang M; Medina-Rivera A; Mohammed H; Schmidt D; Schwalie P; Young EJ; Reimand J; Hadjur S; Gingras AC; Wilson MD
    Genome Biol; 2016 Aug; 17(1):182. PubMed ID: 27582050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of CTCF loop anchor based on machine learning.
    Zhang X; Zhu W; Sun H; Ding Y; Liu L
    Front Genet; 2023; 14():1181956. PubMed ID: 37077544
    [No Abstract]   [Full Text] [Related]  

  • 39. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In the loop: promoter-enhancer interactions and bioinformatics.
    Mora A; Sandve GK; Gabrielsen OS; Eskeland R
    Brief Bioinform; 2016 Nov; 17(6):980-995. PubMed ID: 26586731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.