These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 3855551)

  • 1. The primary process of vision and the structure of bathorhodopsin: a mechanism for photoisomerization of polyenes.
    Liu RS; Asato AE
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):259-63. PubMed ID: 3855551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin.
    Pande AJ; Callender RH; Ebrey TG; Tsuda M
    Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First step in vision: proton transfer or isomerization?
    Dupuis P; Hárosi FI; Sándorfy C; Leclercq JM; Vocelle D
    Rev Can Biol; 1980 Dec; 39(4):247-58. PubMed ID: 6262882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circular dichroism of cattle rhodopsin and bathorhodopsin at liquid nitrogen temperatures.
    Horiuchi S; Tokunaga F; Yoshizawa T
    Biochim Biophys Acta; 1980 Jul; 591(2):445-57. PubMed ID: 7397132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment.
    Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA
    Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism for the initial process of visual excitation. IV. Energy surfaces of visual pigments and photoisomerization mechanism.
    Kakitani T
    Biophys Struct Mech; 1979 Aug; 5(4):293-312. PubMed ID: 486704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics of trans-cis isomerization in bathorhodopsin.
    Birge RR; Hubbard LM
    Biophys J; 1981 Jun; 34(3):517-34. PubMed ID: 7248472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.
    Kandori H; Shichida Y; Yoshizawa T
    Biophys J; 1989 Sep; 56(3):453-7. PubMed ID: 2790133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Bathorhodopsin, hypsorhodopsin and photorhodopsin.
    Yoshizawa T; Shichida Y; Matuoka S
    Vision Res; 1984; 24(11):1455-63. PubMed ID: 6398559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman studies of the primary photochemical event in visual pigments.
    Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B
    Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bathorhodopsin intermediates from 11-cis-rhodopsin and 9-cis-rhodopsin.
    Spalink JD; Reynolds AH; Rentzepis PM; Sperling W; Applebury ML
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1887-91. PubMed ID: 6572950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of the resonance Raman spectrum of bathorhodopsin based on visual pigment analogues.
    Eyring G; Curry B; Mathies R; Fransen R; Palings I; Lugtenburg J
    Biochemistry; 1980 May; 19(11):2410-8. PubMed ID: 7387982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy.
    Ganter UM; Gärtner W; Siebert F
    Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bathorhodopsin structure in the room-temperature rhodopsin photosequence: picosecond time-resolved coherent anti-Stokes Raman scattering.
    Popp A; Ujj L; Atkinson GH
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):372-6. PubMed ID: 8552641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to understanding the initial step in visual transduction.
    Milder SJ; Kliger DS
    Biophys J; 1986 Feb; 49(2):567-70. PubMed ID: 3955186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypsorhodopsin: the first intermediate of the photochemical process in vision.
    Kobayashi T
    FEBS Lett; 1979 Oct; 106(2):313-6. PubMed ID: 499514
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular mechanism for the initial process of visual excitation. III. Theoretical studies of optical spectra and conformations of chromophores in visual pigments, their analogues and intermdiates based on the torsion model.
    Kakitani T; Kakitani H
    Biophys Struct Mech; 1979 Mar; 5(1):55-73. PubMed ID: 427253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman studies of visual pigments.
    Callender R
    Annu Rev Biophys Bioeng; 1977; 6():33-55. PubMed ID: 326149
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.