BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38556229)

  • 41. Acid-catalyzed phenolation of lignin with tea polyphenol: Enhancing uv resistance and oxidation resistance for potential applications.
    Liu B; Zhang W; Zeng J; Gong N; Ying G; Li P; Wang B; Xu J; Gao W; Chen K
    Int J Biol Macromol; 2024 May; 267(Pt 2):131462. PubMed ID: 38614163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase.
    Prinsen P; Narani A; Hartog AF; Wever R; Rothenberg G
    ChemSusChem; 2017 May; 10(10):2267-2273. PubMed ID: 28425669
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats.
    Tobimatsu Y; Chen F; Nakashima J; Escamilla-Treviño LL; Jackson L; Dixon RA; Ralph J
    Plant Cell; 2013 Jul; 25(7):2587-600. PubMed ID: 23903315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Demethylation of Alkali Lignin with Halogen Acids and Its Application to Phenolic Resins.
    Wang H; Eberhardt TL; Wang C; Gao S; Pan H
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31661762
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis.
    Martín-Sampedro R; Santos JI; Eugenio ME; Wicklein B; Jiménez-López L; Ibarra D
    Int J Biol Macromol; 2019 Nov; 140():311-322. PubMed ID: 31408656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural insights into the alkali lignins involving the formation and transformation of arylglycerols and enol ethers.
    Zhao C; Li S; Zhang H; Yue F; Lu F
    Int J Biol Macromol; 2020 Jun; 152():411-417. PubMed ID: 32097737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bonding wood with uncondensed lignins as adhesives.
    Yang G; Gong Z; Luo X; Chen L; Shuai L
    Nature; 2023 Sep; 621(7979):511-515. PubMed ID: 37553075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.
    Yang S; Yuan TQ; Li MF; Sun RC
    Int J Biol Macromol; 2015 Jan; 72():54-62. PubMed ID: 25109457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Understanding the degree of condensation of phenolic and etherified C-9 units of in situ lignins.
    Nanayakkara B; Manley-Harris M; Suckling ID
    J Agric Food Chem; 2011 Dec; 59(23):12514-9. PubMed ID: 22004365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Pretreatment of industrial lignin and catalytic conversion into phenol].
    Qu Y; Luo H; Li H; Xu J
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):765-73. PubMed ID: 25118400
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insights on the physico-chemical properties of alkali lignins from different agro-industrial residues and their use in phenol-formaldehyde wood adhesive formulation.
    Mennani M; Ait Benhamou A; Kasbaji M; Boussetta A; Ablouh EH; Kassab Z; El Achaby M; Boussetta N; Grimi N; Moubarik A
    Int J Biol Macromol; 2022 Nov; 221():149-162. PubMed ID: 36058399
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and characterization of Lignin-graft-poly (ɛ-caprolactone) copolymers based on lignocellulosic butanol residue.
    Liu X; Zong E; Jiang J; Fu S; Wang J; Xu B; Li W; Lin X; Xu Y; Wang C; Chu F
    Int J Biol Macromol; 2015 Nov; 81():521-9. PubMed ID: 26306414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and characterization of poly(DL-lactide)-grafted gelatins as bioabsorbable amphiphilic polymers.
    Ma J; Cao H; Li Y; Li Y
    J Biomater Sci Polym Ed; 2002; 13(1):67-80. PubMed ID: 12003076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Easy synthesis of beta-O-4 type lignin related polymers.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2005 Mar; 3(6):1067-73. PubMed ID: 15750650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols.
    Lund M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):699-703. PubMed ID: 11525617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin.
    Jin Y; Cheng X; Zheng Z
    Bioresour Technol; 2010 Mar; 101(6):2046-8. PubMed ID: 19854642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzymatic synthesis of kraft lignin-acrylate copolymers using an alkaline tolerant laccase.
    Arefmanesh M; Vuong TV; Nikafshar S; Wallmo H; Nejad M; Master ER
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):2969-2979. PubMed ID: 35449361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymer properties of softwood organosolv lignins produced in two different reactor systems.
    Joseph P; Tanase-Opedal M; Moe ST
    Biopolymers; 2023 Dec; 114(12):e23566. PubMed ID: 37795978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis.
    Martín-Sampedro R; Santos JI; Fillat Ú; Wicklein B; Eugenio ME; Ibarra D
    Int J Biol Macromol; 2019 Apr; 126():18-29. PubMed ID: 30572057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.