BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38556728)

  • 1. A computable biomedical knowledge system: Toward rapidly building candidate-directed acyclic graphs.
    Bai Y; Shi X; Du J
    J Evid Based Med; 2024 Jun; 17(2):307-316. PubMed ID: 38556728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for building directed acyclic graphs.
    Ferguson KD; McCann M; Katikireddi SV; Thomson H; Green MJ; Smith DJ; Lewsey JD
    Int J Epidemiol; 2020 Feb; 49(1):322-329. PubMed ID: 31325312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the coverage of SemRep using a relation classification approach.
    Ming S; Zhang R; Kilicoglu H
    J Biomed Inform; 2024 Jul; 155():104658. PubMed ID: 38782169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed acyclic graphs in perioperative observational research-A systematic review and critique against best practice recommendations.
    Watson ML; Hickman SHM; Dreesbeimdiek KM; Kohler K; Stubbs DJ
    PLoS One; 2023; 18(2):e0281259. PubMed ID: 36758007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing a Graph Database for Semantic Literature-Based Discovery.
    Hristovski D; Kastrin A; Dinevski D; Rindflesch TC
    Stud Health Technol Inform; 2015; 216():1094. PubMed ID: 26262393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SemMedDB: a PubMed-scale repository of biomedical semantic predications.
    Kilicoglu H; Shin D; Fiszman M; Rosemblat G; Rindflesch TC
    Bioinformatics; 2012 Dec; 28(23):3158-60. PubMed ID: 23044550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering causal paths to diabetic nephropathy by combining computable biomedical knowledge with graph mining algorithms.
    Wang S; Wang HY; Du J
    AMIA Annu Symp Proc; 2022; 2022():1118-1124. PubMed ID: 37128414
    [No Abstract]   [Full Text] [Related]  

  • 8. [Directed acyclic graphs (DAGs) - the application of causal diagrams in epidemiology].
    Schipf S; Knüppel S; Hardt J; Stang A
    Gesundheitswesen; 2011 Dec; 73(12):888-92. PubMed ID: 22193898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining directed acyclic graphs and the change-in-estimate procedure as a novel approach to adjustment-variable selection in epidemiology.
    Evans D; Chaix B; Lobbedez T; Verger C; Flahault A
    BMC Med Res Methodol; 2012 Oct; 12():156. PubMed ID: 23058038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations.
    Tennant PWG; Murray EJ; Arnold KF; Berrie L; Fox MP; Gadd SC; Harrison WJ; Keeble C; Ranker LR; Textor J; Tomova GD; Gilthorpe MS; Ellison GTH
    Int J Epidemiol; 2021 May; 50(2):620-632. PubMed ID: 33330936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a characterization of apparent contradictions in the biomedical literature using context analysis.
    Rosemblat G; Fiszman M; Shin D; Kilicoglu H
    J Biomed Inform; 2019 Oct; 98():103275. PubMed ID: 31473364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enumerating consistent sub-graphs of directed acyclic graphs: an insight into biomedical ontologies.
    Peng Y; Jiang Y; Radivojac P
    Bioinformatics; 2018 Jul; 34(13):i313-i322. PubMed ID: 29949985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed acyclic graphs: An under-utilized tool for child maltreatment research.
    Austin AE; Desrosiers TA; Shanahan ME
    Child Abuse Negl; 2019 May; 91():78-87. PubMed ID: 30836237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations.
    Bakal G; Talari P; Kakani EV; Kavuluru R
    J Biomed Inform; 2018 Jun; 82():189-199. PubMed ID: 29763706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining Disease-Symptom Relation from Massive Biomedical Literature and Its Application in Severe Disease Diagnosis.
    Xia E; Sun W; Mei J; Xu E; Wang K; Qin Y
    AMIA Annu Symp Proc; 2018; 2018():1118-1126. PubMed ID: 30815154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Biomedical Relation Extraction Across Diverse Relation Types: Model Development and Usability Study on COVID-19.
    Zhang Z; Fang M; Wu R; Zong H; Huang H; Tong Y; Xie Y; Cheng S; Wei Z; Crabbe MJC; Zhang X; Wang Y
    J Med Internet Res; 2023 Sep; 25():e48115. PubMed ID: 37632414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards medical knowmetrics: representing and computing medical knowledge using semantic predications as the knowledge unit and the uncertainty as the knowledge context.
    Li X; Peng S; Du J
    Scientometrics; 2021; 126(7):6225-6251. PubMed ID: 33612884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Human-like Mining and Constructing Reliable Genetic Association Database with Deep Reinforcement Learning.
    Wang H; Liu X; Tao Y; Ye W; Jin Q; Cohen WW; Xing EP
    Pac Symp Biocomput; 2019; 24():112-123. PubMed ID: 30864315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A directed acyclic graph for interactions.
    Nilsson A; Bonander C; Strömberg U; Björk J
    Int J Epidemiol; 2021 May; 50(2):613-619. PubMed ID: 33221880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.