These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38557193)

  • 1. Smart active particles learn and transcend bacterial foraging strategies.
    Nasiri M; Loran E; Liebchen B
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2317618121. PubMed ID: 38557193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning with artificial microswimmers.
    Muiños-Landin S; Fischer A; Holubec V; Cichos F
    Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (Reinforcement?) Learning to forage optimally.
    Kolling N; Akam T
    Curr Opin Neurobiol; 2017 Oct; 46():162-169. PubMed ID: 28918312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments.
    George TM; Rastogi M; de Cothi W; Clopath C; Stachenfeld K; Barry C
    Elife; 2024 Feb; 13():. PubMed ID: 38334473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow Navigation by Smart Microswimmers via Reinforcement Learning.
    Colabrese S; Gustavsson K; Celani A; Biferale L
    Phys Rev Lett; 2017 Apr; 118(15):158004. PubMed ID: 28452499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning how to find targets in the micro-world: the case of intermittent active Brownian particles.
    Caraglio M; Kaur H; Fiderer LJ; López-Incera A; Briegel HJ; Franosch T; Muñoz-Gil G
    Soft Matter; 2024 Feb; 20(9):2008-2016. PubMed ID: 38328899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spurious normativity enhances learning of compliance and enforcement behavior in artificial agents.
    Köster R; Hadfield-Menell D; Everett R; Weidinger L; Hadfield GK; Leibo JZ
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning the opportunity cost of time in a patch-foraging task.
    Constantino SM; Daw ND
    Cogn Affect Behav Neurosci; 2015 Dec; 15(4):837-53. PubMed ID: 25917000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overharvesting in human patch foraging reflects rational structure learning and adaptive planning.
    Harhen NC; Bornstein AM
    Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2216524120. PubMed ID: 36961923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jamming and Attraction of Interacting Run-and-Tumble Random Walkers.
    Slowman AB; Evans MR; Blythe RA
    Phys Rev Lett; 2016 May; 116(21):218101. PubMed ID: 27284675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overmatching under food uncertainty in foraging pigeons.
    Anselme P; Wittek N; Oeksuez F; Güntürkün O
    Behav Processes; 2022 Sep; 201():104728. PubMed ID: 35940400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-passage time of run-and-tumble particles.
    Angelani L; Di Leonardo R; Paoluzzi M
    Eur Phys J E Soft Matter; 2014 Jul; 37(7):15. PubMed ID: 25015558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foraging decisions as multi-armed bandit problems: Applying reinforcement learning algorithms to foraging data.
    Morimoto J
    J Theor Biol; 2019 Apr; 467():48-56. PubMed ID: 30735736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of resource partitioning between foraging bees based on learning.
    Dubois T; Pasquaretta C; Barron AB; Gautrais J; Lihoreau M
    PLoS Comput Biol; 2021 Jul; 17(7):e1009260. PubMed ID: 34319987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemotaxis of an elastic flagellated microrobot.
    Mo C; Fu Q; Bian X
    Phys Rev E; 2023 Oct; 108(4-1):044408. PubMed ID: 37978695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart Magnetic Microrobots Learn to Swim with Deep Reinforcement Learning.
    Behrens MR; Ruder WC
    Adv Intell Syst; 2022 Oct; 4(10):. PubMed ID: 38463142
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.