BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 38557903)

  • 1. Editing of SlWRKY29 by CRISPR-activation promotes somatic embryogenesis in Solanum lycopersicum cv. Micro-Tom.
    Valencia-Lozano E; Cabrera-Ponce JL; Barraza A; López-Calleja AC; García-Vázquez E; Rivera-Toro DM; de Folter S; Alvarez-Venegas R
    PLoS One; 2024; 19(4):e0301169. PubMed ID: 38557903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application and development of genome editing technologies to the Solanaceae plants.
    Yamamoto T; Kashojiya S; Kamimura S; Kameyama T; Ariizumi T; Ezura H; Miura K
    Plant Physiol Biochem; 2018 Oct; 131():37-46. PubMed ID: 29523384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects.
    Salava H; Thula S; Mohan V; Kumar R; Maghuly F
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Protocol for Assembly of Multiple gRNAs into a Direct Vector for Genome Editing in Tomato.
    Satyavathi VV; Princy K; Gupta N; Nizampatnam NR; Sharma R; Sreelakshmi Y
    Methods Mol Biol; 2024; 2788():317-335. PubMed ID: 38656523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration.
    Lin CS; Hsu CT; Yuan YH; Zheng PX; Wu FH; Cheng QW; Wu YL; Wu TL; Lin S; Yue JJ; Cheng YH; Lin SI; Shih MC; Sheen J; Lin YC
    Plant Physiol; 2022 Mar; 188(4):1917-1930. PubMed ID: 35088855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in application of genome editing in tomato and recent development of genome editing technology.
    Xia X; Cheng X; Li R; Yao J; Li Z; Cheng Y
    Theor Appl Genet; 2021 Sep; 134(9):2727-2747. PubMed ID: 34076729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing to Achieve the Crop Ideotype in Tomato.
    Čermák T; Gasparini K; Kevei Z; Zsögön A
    Methods Mol Biol; 2021; 2264():219-244. PubMed ID: 33263914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.
    Shikata M; Ezura H
    Methods Mol Biol; 2016; 1363():47-55. PubMed ID: 26577780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid improvement of domestication traits in an orphan crop by genome editing.
    Lemmon ZH; Reem NT; Dalrymple J; Soyk S; Swartwood KE; Rodriguez-Leal D; Van Eck J; Lippman ZB
    Nat Plants; 2018 Oct; 4(10):766-770. PubMed ID: 30287957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRa-mediated transcriptional activation of the SlPR-1 gene in edited tomato plants.
    García-Murillo L; Valencia-Lozano E; Priego-Ranero NA; Cabrera-Ponce JL; Duarte-Aké FP; Vizuet-de-Rueda JC; Rivera-Toro DM; Herrera-Ubaldo H; de Folter S; Alvarez-Venegas R
    Plant Sci; 2023 Apr; 329():111617. PubMed ID: 36731748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Letter to the Editor: The World's First CRISPR Tomato Launched to a Japanese Market: The Social-Economic Impact of its Implementation on Crop Genome Editing.
    Ezura H
    Plant Cell Physiol; 2022 Jun; 63(6):731-733. PubMed ID: 35388425
    [No Abstract]   [Full Text] [Related]  

  • 15. Trait discovery and editing in tomato.
    Rothan C; Diouf I; Causse M
    Plant J; 2019 Jan; 97(1):73-90. PubMed ID: 30417464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical look on CRISPR-based genome editing in plants.
    Ahmad N; Rahman MU; Mukhtar Z; Zafar Y; Zhang B
    J Cell Physiol; 2020 Feb; 235(2):666-682. PubMed ID: 31317541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-Mediated Generation of Pathogen-Resistant Tomato against
    Pramanik D; Shelake RM; Park J; Kim MJ; Hwang I; Park Y; Kim JY
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33668636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach.
    Gupta S; Kumar A; Patel R; Kumar V
    Mol Biol Rep; 2021 May; 48(5):4851-4863. PubMed ID: 34114124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches.
    Das T; Anand U; Pal T; Mandal S; Kumar M; Radha ; Gopalakrishnan AV; Lastra JMP; Dey A
    Biotechnol Bioeng; 2023 May; 120(5):1215-1228. PubMed ID: 36740587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Tomato Gene Editing.
    Larriba E; Yaroshko O; Pérez-Pérez JM
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.