These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38558187)

  • 1. Oscillatory work and the step that generates force in single myofibrils from rabbit psoas.
    Kawai M; Iorga B
    Pflugers Arch; 2024 Jun; 476(6):949-962. PubMed ID: 38558187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate has dual roles in cross-bridge kinetics in rabbit psoas single myofibrils.
    Kawai M; Stehle R; Pfitzer G; Iorga B
    J Gen Physiol; 2021 Mar; 153(3):. PubMed ID: 33599680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas.
    Candau R; Kawai M
    J Muscle Res Cell Motil; 2011 Dec; 32(4-5):315-26. PubMed ID: 22006015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle.
    Kawai M; Halvorson HR
    Biophys J; 1991 Feb; 59(2):329-42. PubMed ID: 2009356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain sensitivity and turnover rate of low force cross-bridges in contracting skeletal muscle fibers in the presence of phosphate.
    Iwamoto H
    Biophys J; 1995 Jan; 68(1):243-50. PubMed ID: 7711247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of force generation and Pi release in rabbit soleus muscle fibers.
    Homsher E; Millar N
    Adv Exp Med Biol; 1993; 332():495-502; discussion 503. PubMed ID: 8109362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP binding and cross-bridge detachment steps during full Ca²⁺ activation: comparison of myofibril and muscle fibre mechanics by sinusoidal analysis.
    Iorga B; Wang L; Stehle R; Pfitzer G; Kawai M
    J Physiol; 2012 Jul; 590(14):3361-73. PubMed ID: 22586213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.
    Kawai M; Saeki Y; Zhao Y
    Circ Res; 1993 Jul; 73(1):35-50. PubMed ID: 8508533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elementary steps of contraction probed by sinusoidal analysis technique in rabbit psoas fibers.
    Kawai M; Zhao Y; Halvorson HR
    Adv Exp Med Biol; 1993; 332():567-77; discussion 577-80. PubMed ID: 8109368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.
    Zhao Y; Kawai M
    Biophys J; 1994 Oct; 67(4):1655-68. PubMed ID: 7819497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers.
    Kawai M; Zhao Y
    Biophys J; 1993 Aug; 65(2):638-51. PubMed ID: 8218893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. History-dependent properties of skeletal muscle myofibrils contracting along the ascending limb of the force-length relationship.
    Pun C; Syed A; Rassier DE
    Proc Biol Sci; 2010 Feb; 277(1680):475-84. PubMed ID: 19846455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the cross-bridge force-generating step using inorganic phosphate and BDM in myofibrils from rabbit skeletal muscles.
    Tesi C; Colomo F; Piroddi N; Poggesi C
    J Physiol; 2002 May; 541(Pt 1):187-99. PubMed ID: 12015429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle.
    Yamakawa M; Goldman YE
    J Gen Physiol; 1991 Oct; 98(4):657-79. PubMed ID: 1960528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile effects of the exchange of cardiac troponin for fast skeletal troponin in rabbit psoas single myofibrils.
    Piroddi N; Tesi C; Pellegrino MA; Tobacman LS; Homsher E; Poggesi C
    J Physiol; 2003 Nov; 552(Pt 3):917-31. PubMed ID: 12937281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibers.
    Wang G; Kawai M
    Biophys J; 1997 Aug; 73(2):878-94. PubMed ID: 9251805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous tension oscillation (SPOC) of muscle fibers and myofibrils minimum requirements for SPOC.
    Ishiwata S; Anazawa T; Fujita T; Fukuda N; Shimizu H; Yasuda K
    Adv Exp Med Biol; 1993; 332():545-54; discussion 555-6. PubMed ID: 8109366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titin-based contribution to shortening velocity of rabbit skeletal myofibrils.
    Minajeva A; Neagoe C; Kulke M; Linke WA
    J Physiol; 2002 Apr; 540(Pt 1):177-88. PubMed ID: 11927678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of nucleotide release kinetics in single skeletal muscle myofibrils during isometric and isovelocity contractions using fluorescence microscopy.
    Chaen S; Shirakawa I; Bagshaw CR; Sugi H
    Biophys J; 1997 Oct; 73(4):2033-42. PubMed ID: 9336198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.