These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 38558290)
1. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. Cooley MB; Wegierak D; Exner AA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1957. PubMed ID: 38558290 [TBL] [Abstract][Full Text] [Related]
2. High-resolution 3D visualization of nanomedicine distribution in tumors. Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157 [TBL] [Abstract][Full Text] [Related]
3. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. de Maar JS; Sofias AM; Porta Siegel T; Vreeken RJ; Moonen C; Bos C; Deckers R Theranostics; 2020; 10(4):1884-1909. PubMed ID: 32042343 [TBL] [Abstract][Full Text] [Related]
4. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Strittmatter N; Moss JI; Race AM; Sutton D; Canales JR; Ling S; Wong E; Wilson J; Smith A; Howes C; Bunch J; Barry ST; Goodwin RJA; Ashford MB Theranostics; 2022; 12(5):2162-2174. PubMed ID: 35265205 [TBL] [Abstract][Full Text] [Related]
5. Improving nanotherapy delivery and action through image-guided systems pharmacology. Ng TSC; Garlin MA; Weissleder R; Miller MA Theranostics; 2020; 10(3):968-997. PubMed ID: 31938046 [TBL] [Abstract][Full Text] [Related]
6. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373 [TBL] [Abstract][Full Text] [Related]
7. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Miller MA; Gadde S; Pfirschke C; Engblom C; Sprachman MM; Kohler RH; Yang KS; Laughney AM; Wojtkiewicz G; Kamaly N; Bhonagiri S; Pittet MJ; Farokhzad OC; Weissleder R Sci Transl Med; 2015 Nov; 7(314):314ra183. PubMed ID: 26582898 [TBL] [Abstract][Full Text] [Related]
8. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wang H; Picchio ML; Calderón M Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jul; 14(4):e1791. PubMed ID: 35338603 [TBL] [Abstract][Full Text] [Related]
9. Combining Nanomedicine and Immunotherapy. Shi Y; Lammers T Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725 [TBL] [Abstract][Full Text] [Related]
10. Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. Sulheim E; Kim J; van Wamel A; Kim E; Snipstad S; Vidic I; Grimstad IH; Widerøe M; Torp SH; Lundgren S; Waxman DJ; de Lange Davies C J Control Release; 2018 Jun; 279():292-305. PubMed ID: 29684498 [TBL] [Abstract][Full Text] [Related]
11. Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Yang J; Wang X; Wang B; Park K; Wooley K; Zhang S Adv Drug Deliv Rev; 2022 Nov; 190():114525. PubMed ID: 36100142 [TBL] [Abstract][Full Text] [Related]
12. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166 [TBL] [Abstract][Full Text] [Related]
13. Mathematical modeling of the heterogeneous distributions of nanomedicines in solid tumors. He H; Liu C; Liu Y; Liu X; Wu Y; Fan J; Zhao L; Cao Y Eur J Pharm Biopharm; 2019 Sep; 142():153-164. PubMed ID: 31226367 [TBL] [Abstract][Full Text] [Related]
14. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353 [TBL] [Abstract][Full Text] [Related]
15. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. Roma-Rodrigues C; Raposo LR; Valente R; Fernandes AR; Baptista PV Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Sep; 13(5):e1704. PubMed ID: 33565269 [TBL] [Abstract][Full Text] [Related]
16. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Park J; Choi Y; Chang H; Um W; Ryu JH; Kwon IC Theranostics; 2019; 9(26):8073-8090. PubMed ID: 31754382 [TBL] [Abstract][Full Text] [Related]
17. Stimuli-activatable nanomedicines for chemodynamic therapy of cancer. Wang W; Jin Y; Xu Z; Liu X; Bajwa SZ; Khan WS; Yu H Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1614. PubMed ID: 32011108 [TBL] [Abstract][Full Text] [Related]
18. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817 [TBL] [Abstract][Full Text] [Related]
19. Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies. Man F; Lammers T; T M de Rosales R Mol Imaging Biol; 2018 Oct; 20(5):683-695. PubMed ID: 30084044 [TBL] [Abstract][Full Text] [Related]
20. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Li P; Wang D; Hu J; Yang X Adv Drug Deliv Rev; 2022 Oct; 189():114447. PubMed ID: 35863515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]