These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38558468)
1. Lanthanide-Based Single-Chain Nanoparticles as "Visual" Pass/Fail Sensors of Maximum Permissible Concentration of Cu Pinacho-Olaciregui J; Verde-Sesto E; Taton D; Pomposo JA Macromol Rapid Commun; 2024 Jul; 45(14):e2400116. PubMed ID: 38558468 [TBL] [Abstract][Full Text] [Related]
2. Self-assembled coordination nanoparticles from nucleotides and lanthanide ions with doped-boronic acid-fluorescein for detection of cyanide in the presence of Cu2+ in water. Kulchat S; Chaicham A; Ekgasit S; Tumcharern G; Tuntulani T; Tomapatanaget B Talanta; 2012 Jan; 89():264-9. PubMed ID: 22284490 [TBL] [Abstract][Full Text] [Related]
3. SDS-capped 1-pyrenecarboxaldehyde nanoprobe for selective detection of Cu Kamble AA; Dalavi DK; Desai NK; Mahajan PG; Kolekar GB; Patil SR Luminescence; 2023 Nov; 38(11):1883-1891. PubMed ID: 37564003 [TBL] [Abstract][Full Text] [Related]
4. Syntheses, structures, and magnetic properties of acetato- and diphenolato-bridged 3d-4f binuclear complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = Zn(II), Cu(II), Ni(II), Co(II); Ln = La(III), Gd(III), Tb(III), Dy(III); 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = acetato; hfac = hexafluoroacetylacetonato; x = 0 or 1). Towatari M; Nishi K; Fujinami T; Matsumoto N; Sunatsuki Y; Kojima M; Mochida N; Ishida T; Re N; Mrozinski J Inorg Chem; 2013 May; 52(10):6160-78. PubMed ID: 23646986 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional peptide-based fluorescent chemosensor for detection of Hg Pang X; Wang L; Gao L; Feng H; Kong J; Li L Luminescence; 2019 Sep; 34(6):585-594. PubMed ID: 31074183 [TBL] [Abstract][Full Text] [Related]
6. A Pentapeptide with Tyrosine Moiety as Fluorescent Chemosensor for Selective Nanomolar-Level Detection of Copper(II) Ions. Żamojć K; Kamrowski D; Zdrowowicz M; Wyrzykowski D; Wiczk W; Chmurzyński L; Makowska J Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979365 [TBL] [Abstract][Full Text] [Related]
7. Detection of copper ions in drinking water using the competitive adsorption of proteins. Wang R; Wang W; Ren H; Chae J Biosens Bioelectron; 2014 Jul; 57():179-85. PubMed ID: 24583689 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper(II) and cobalt(II), and their use in a test strip. Sang F; Zhang X; Shen F Mikrochim Acta; 2019 May; 186(6):373. PubMed ID: 31123901 [TBL] [Abstract][Full Text] [Related]
9. Luminescence resonance energy transfer sensors based on the assemblies of oppositely charged lanthanide/gold nanoparticles in aqueous solution. Gu JQ; Sun LD; Yan ZG; Yan CH Chem Asian J; 2008 Oct; 3(10):1857-64. PubMed ID: 18726878 [TBL] [Abstract][Full Text] [Related]
10. Light-induced pH change and its application to solid phase extraction of trace heavy metals by high-magnetization Fe3O4@SiO2@TiO2 nanoparticles followed by inductively coupled plasma mass spectrometry detection. Zhang N; Peng H; Hu B Talanta; 2012 May; 94():278-83. PubMed ID: 22608448 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of anion binding in lanthanide optical sensors. Cable ML; Kirby JP; Gray HB; Ponce A Acc Chem Res; 2013 Nov; 46(11):2576-84. PubMed ID: 24032446 [TBL] [Abstract][Full Text] [Related]
12. UV-vis spectroscopic method for detection and removal of heavy metal ions in water using Ag doped ZnO nanoparticles. Ahmed A; Singh A; Padha B; Sundramoorthy AK; Tomar A; Arya S Chemosphere; 2022 Sep; 303(Pt 3):135208. PubMed ID: 35667500 [TBL] [Abstract][Full Text] [Related]
13. Fluorescent detection of Cu (II) ions based on DNAzymatic cascaded cyclic amplification. Tian J; Du Z; Zhu L; Shao X; Li X; Xu W Mikrochim Acta; 2020 Jul; 187(8):443. PubMed ID: 32661732 [TBL] [Abstract][Full Text] [Related]
14. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system. Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277 [TBL] [Abstract][Full Text] [Related]
15. UV light-tunable fluorescent inks and polymer hydrogel films based on carbon nanodots and lanthanide for enhancing anti-counterfeiting. Chen B; Xie H; Wang S; Guo Z; Hu Y; Xie H Luminescence; 2019 Jun; 34(4):437-443. PubMed ID: 31025821 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, characterization, and application of Eu(III), Tb(III), Sm(III), and Dy(III) lanthanide chelate nanoparticle labels. Huhtinen P; Kivelä M; Kuronen O; Hagren V; Takalo H; Tenhu H; Lövgren T; Härmä H Anal Chem; 2005 Apr; 77(8):2643-8. PubMed ID: 15828805 [TBL] [Abstract][Full Text] [Related]
17. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Bhuyan MS; Bakar MA Environ Sci Pollut Res Int; 2017 Dec; 24(35):27587-27600. PubMed ID: 28980109 [TBL] [Abstract][Full Text] [Related]
18. [Exposure level of 16 metal elements in drinking water in Beijing]. Tian P; Zhao J; Wei J; Chen B Wei Sheng Yan Jiu; 2012 Sep; 41(5):805-8. PubMed ID: 23213698 [TBL] [Abstract][Full Text] [Related]
19. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Chaiyo S; Siangproh W; Apilux A; Chailapakul O Anal Chim Acta; 2015 Mar; 866():75-83. PubMed ID: 25732695 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]