These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38558987)
1. Modeling interpretable correspondence between cell state and perturbation response with CellCap. Xu Y; Fleming S; Tegtmeyer M; McCarroll SA; Babadi M bioRxiv; 2024 Mar; ():. PubMed ID: 38558987 [TBL] [Abstract][Full Text] [Related]
2. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics. Seninge L; Anastopoulos I; Ding H; Stuart J Nat Commun; 2021 Sep; 12(1):5684. PubMed ID: 34584103 [TBL] [Abstract][Full Text] [Related]
3. Predicting single-cell cellular responses to perturbations using cycle consistency learning. Huang W; Liu H Bioinformatics; 2024 Jun; 40(Suppl 1):i462-i470. PubMed ID: 38940153 [TBL] [Abstract][Full Text] [Related]
4. Homogeneous Space Construction and Projection for Single-Cell Expression Prediction Based on Deep Learning. Yeh CH; Chen ZG; Liou CY; Chen MJ Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760098 [TBL] [Abstract][Full Text] [Related]
5. Predicting cellular responses to complex perturbations in high-throughput screens. Lotfollahi M; Klimovskaia Susmelj A; De Donno C; Hetzel L; Ji Y; Ibarra IL; Srivatsan SR; Naghipourfar M; Daza RM; Martin B; Shendure J; McFaline-Figueroa JL; Boyeau P; Wolf FA; Yakubova N; Günnemann S; Trapnell C; Lopez-Paz D; Theis FJ Mol Syst Biol; 2023 Jun; 19(6):e11517. PubMed ID: 37154091 [TBL] [Abstract][Full Text] [Related]
7. Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration. Krishnan K; Kassab R; Agajanian S; Verkhivker G Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232566 [TBL] [Abstract][Full Text] [Related]
8. scEMB: Learning context representation of genes based on large-scale single-cell transcriptomics. Hsieh KL; Chu Y; Li X; Pilié PG; Dai Y bioRxiv; 2024 Sep; ():. PubMed ID: 39386549 [TBL] [Abstract][Full Text] [Related]
9. ICAT: a novel algorithm to robustly identify cell states following perturbations in single-cell transcriptomes. Hawkins DY; Zuch DT; Huth J; Rodriguez-Sastre N; McCutcheon KR; Glick A; Lion AT; Thomas CF; Descoteaux AE; Johnson WE; Bradham CA Bioinformatics; 2023 May; 39(5):. PubMed ID: 37086439 [TBL] [Abstract][Full Text] [Related]
10. Decoding Heterogenous Single-cell Perturbation Responses. Song B; Liu D; Dai W; McMyn N; Wang Q; Yang D; Krejci A; Vasilyev A; Untermoser N; Loregger A; Song D; Williams B; Rosen B; Cheng X; Chao L; Kale HT; Zhang H; Diao Y; Bürckstümmer T; Siliciano JM; Li JJ; Siliciano R; Huangfu D; Li W bioRxiv; 2023 Nov; ():. PubMed ID: 37961332 [TBL] [Abstract][Full Text] [Related]
11. Generative modeling of single-cell gene expression for dose-dependent chemical perturbations. Kana O; Nault R; Filipovic D; Marri D; Zacharewski T; Bhattacharya S Patterns (N Y); 2023 Aug; 4(8):100817. PubMed ID: 37602218 [TBL] [Abstract][Full Text] [Related]
13. Interpretable Fine-Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning. Wang C; Choi HJ; Woodbury L; Lee K Adv Sci (Weinh); 2024 Nov; 11(41):e2403547. PubMed ID: 39239705 [TBL] [Abstract][Full Text] [Related]
14. Machine learning for perturbational single-cell omics. Ji Y; Lotfollahi M; Wolf FA; Theis FJ Cell Syst; 2021 Jun; 12(6):522-537. PubMed ID: 34139164 [TBL] [Abstract][Full Text] [Related]
15. Fitting mathematical models of biochemical pathways to steady state perturbation response data without simulating perturbation experiments. Santra T Sci Rep; 2018 Aug; 8(1):11679. PubMed ID: 30076370 [TBL] [Abstract][Full Text] [Related]
16. Stochastic Modeling of Biophysical Responses to Perturbation. Chari T; Gorin G; Pachter L bioRxiv; 2024 Jul; ():. PubMed ID: 39005347 [TBL] [Abstract][Full Text] [Related]
17. D-SPIN constructs gene regulatory network models from multiplexed scRNA-seq data revealing organizing principles of cellular perturbation response. Jiang J; Chen S; Tsou T; McGinnis CS; Khazaei T; Zhu Q; Park JH; Strazhnik IM; Vielmetter J; Gong Y; Hanna J; Chow ED; Sivak DA; Gartner ZJ; Thomson M bioRxiv; 2024 Jun; ():. PubMed ID: 37131803 [TBL] [Abstract][Full Text] [Related]
18. CellBox: Interpretable Machine Learning for Perturbation Biology with Application to the Design of Cancer Combination Therapy. Yuan B; Shen C; Luna A; Korkut A; Marks DS; Ingraham J; Sander C Cell Syst; 2021 Feb; 12(2):128-140.e4. PubMed ID: 33373583 [TBL] [Abstract][Full Text] [Related]
19. A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. Minoura K; Abe K; Nam H; Nishikawa H; Shimamura T Cell Rep Methods; 2021 Sep; 1(5):100071. PubMed ID: 35474667 [TBL] [Abstract][Full Text] [Related]
20. MS-CPFI: A model-agnostic Counterfactual Perturbation Feature Importance algorithm for interpreting black-box Multi-State models. Cottin A; Zulian M; Pécuchet N; Guilloux A; Katsahian S Artif Intell Med; 2024 Jan; 147():102741. PubMed ID: 38184354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]