These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38559051)

  • 1. Detection of Personal and Family History of Suicidal Thoughts and Behaviors using Deep Learning and Natural Language Processing: A Multi-Site Study.
    Adekkanattu P; Furmanchuk A; Wu Y; Pathak A; Patra BG; Bost S; Morrow D; Wang GH; Yang Y; Forrest NJ; Luo Y; Walunas TL; Jenny WL; Gelad W; Bian J; Bao Y; Weiner M; Oslin D; Pathak J
    Res Sq; 2024 Mar; ():. PubMed ID: 38559051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for identifying personal and family history of suicidal thoughts and behaviors from EHRs.
    Adekkanattu P; Furmanchuk A; Wu Y; Pathak A; Patra BG; Bost S; Morrow D; Wang GH; Yang Y; Forrest NJ; Luo Y; Walunas TL; Lo-Ciganic W; Gelad W; Bian J; Bao Y; Weiner M; Oslin D; Pathak J
    NPJ Digit Med; 2024 Sep; 7(1):260. PubMed ID: 39341983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Portability of natural language processing methods to detect suicidality from clinical text in US and UK electronic health records.
    Cusick M; Velupillai S; Downs J; Campion TR; Sholle ET; Dutta R; Pathak J
    J Affect Disord Rep; 2022 Dec; 10():. PubMed ID: 36644339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Large Language Model-Based Generative Natural Language Processing Framework Finetuned on Clinical Notes Accurately Extracts Headache Frequency from Electronic Health Records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    medRxiv; 2023 Oct; ():. PubMed ID: 37873417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study.
    Sivarajkumar S; Gao F; Denny P; Aldhahwani B; Visweswaran S; Bove A; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e52289. PubMed ID: 38568736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using weak supervision and deep learning to classify clinical notes for identification of current suicidal ideation.
    Cusick M; Adekkanattu P; Campion TR; Sholle ET; Myers A; Banerjee S; Alexopoulos G; Wang Y; Pathak J
    J Psychiatr Res; 2021 Apr; 136():95-102. PubMed ID: 33581461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of deep learning methods for de-identification of clinical notes in cross-institute settings.
    Yang X; Lyu T; Li Q; Lee CY; Bian J; Hogan WR; Wu Y
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):232. PubMed ID: 31801524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting Critical Information from Unstructured Clinicians' Notes Data to Identify Dementia Severity Using a Rule-Based Approach: Feasibility Study.
    Prakash R; Dupre ME; Østbye T; Xu H
    JMIR Aging; 2024 Sep; 7():e57926. PubMed ID: 39316421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Psychosis Episodes in Psychiatric Admission Notes via Rule-based Methods, Machine Learning, and Pre-Trained Language Models.
    Hua Y; Blackley S; Shinn A; Skinner J; Moran L; Zhou L
    Res Sq; 2024 Mar; ():. PubMed ID: 38562731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Psychosis Episodes in Psychiatric Admission Notes via Rule-based Methods, Machine Learning, and Pre-Trained Language Models.
    Hua Y; Blackley SV; Shinn AK; Skinner JP; Moran LV; Zhou L
    medRxiv; 2024 Mar; ():. PubMed ID: 38562701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting social support and social isolation information from clinical psychiatry notes: comparing a rule-based natural language processing system and a large language model.
    Patra BG; Lepow LA; Kasi Reddy Jagadeesh Kumar P; Vekaria V; Sharma MM; Adekkanattu P; Fennessy B; Hynes G; Landi I; Sanchez-Ruiz JA; Ryu E; Biernacka JM; Nadkarni GN; Talati A; Weissman M; Olfson M; Mann JJ; Zhang Y; Charney AW; Pathak J
    J Am Med Inform Assoc; 2025 Jan; 32(1):218-226. PubMed ID: 39423850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalizability and portability of natural language processing system to extract individual social risk factors.
    Magoc T; Allen KS; McDonnell C; Russo JP; Cummins J; Vest JR; Harle CA
    Int J Med Inform; 2023 Sep; 177():105115. PubMed ID: 37302362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing.
    Sivarajkumar S; Tam TYC; Mohammad HA; Viggiano S; Oniani D; Visweswaran S; Wang Y
    J Am Med Inform Assoc; 2024 Oct; 31(10):2217-2227. PubMed ID: 39001795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving Biosurveillance Beyond Coded Data Using AI for Symptom Detection From Physician Notes: Retrospective Cohort Study.
    McMurry AJ; Zipursky AR; Geva A; Olson KL; Jones JR; Ignatov V; Miller TA; Mandl KD
    J Med Internet Res; 2024 Apr; 26():e53367. PubMed ID: 38573752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying social determinants of health from clinical narratives: A study of performance, documentation ratio, and potential bias.
    Yu Z; Peng C; Yang X; Dang C; Adekkanattu P; Gopal Patra B; Peng Y; Pathak J; Wilson DL; Chang CY; Lo-Ciganic WH; George TJ; Hogan WR; Guo Y; Bian J; Wu Y
    J Biomed Inform; 2024 May; 153():104642. PubMed ID: 38621641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contextualized medication information extraction using Transformer-based deep learning architectures.
    Chen A; Yu Z; Yang X; Guo Y; Bian J; Wu Y
    J Biomed Inform; 2023 Jun; 142():104370. PubMed ID: 37100106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicenter Validation of Natural Language Processing Algorithms for the Detection of Common Data Elements in Operative Notes for Total Hip Arthroplasty: Algorithm Development and Validation.
    Han P; Fu S; Kolis J; Hughes R; Hallstrom BR; Carvour M; Maradit-Kremers H; Sohn S; Vydiswaran VGV
    JMIR Med Inform; 2022 Aug; 10(8):e38155. PubMed ID: 36044253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.