These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries. Zhang Y; Kim JC; Song HW; Lee S Nanoscale; 2023 Mar; 15(9):4195-4218. PubMed ID: 36757735 [TBL] [Abstract][Full Text] [Related]
6. Unravelling Li He J; Tao T; Yang F; Sun Z ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616 [TBL] [Abstract][Full Text] [Related]
7. Highly Exfoliated and Functionalized Single-Walled Carbon Nanotubes as Fast-Charging, High-Capacity Cathodes for Rechargeable Lithium-Ion Batteries. Park JH; Lee HJ; Cho JY; Jeong S; Kim HY; Kim JH; Seo SH; Jeong HJ; Jeong SY; Lee GW; Han JT ACS Appl Mater Interfaces; 2020 Jan; 12(1):1322-1329. PubMed ID: 31840977 [TBL] [Abstract][Full Text] [Related]
8. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
9. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries. Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314 [TBL] [Abstract][Full Text] [Related]
10. Fluorinated Carbons as Rechargeable Li-Ion Battery Cathodes in the Voltage Window of 0.5-4.8 V. Chen P; Jiang C; Jiang J; Zou J; Ran Q; Wang X; Niu X; Wang L ACS Appl Mater Interfaces; 2021 Jul; 13(26):30576-30582. PubMed ID: 34165960 [TBL] [Abstract][Full Text] [Related]
11. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
13. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes? Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645 [TBL] [Abstract][Full Text] [Related]
14. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
15. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related]
16. Ferrocene Appended Porphyrin-Based Bipolar Electrode Material for High-Performance Energy Storage. Chowdhury S; Jana S; Panguluri SPK; Wenzel W; Klayatskaya S; Ruben M ChemSusChem; 2024 May; 17(10):e202301903. PubMed ID: 38266158 [TBL] [Abstract][Full Text] [Related]
17. Sodium layered oxide cathodes: properties, practicality and prospects. Guo YJ; Jin RX; Fan M; Wang WP; Xin S; Wan LJ; Guo YG Chem Soc Rev; 2024 Jul; 53(15):7828-7874. PubMed ID: 38962926 [TBL] [Abstract][Full Text] [Related]
18. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273 [TBL] [Abstract][Full Text] [Related]
19. Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries. Byeon A; Zhao MQ; Ren CE; Halim J; Kota S; Urbankowski P; Anasori B; Barsoum MW; Gogotsi Y ACS Appl Mater Interfaces; 2017 Feb; 9(5):4296-4300. PubMed ID: 27275950 [TBL] [Abstract][Full Text] [Related]
20. A Pyrazine-Based Polymer for Fast-Charge Batteries. Mao M; Luo C; Pollard TP; Hou S; Gao T; Fan X; Cui C; Yue J; Tong Y; Yang G; Deng T; Zhang M; Ma J; Suo L; Borodin O; Wang C Angew Chem Int Ed Engl; 2019 Dec; 58(49):17820-17826. PubMed ID: 31571354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]