These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38559931)

  • 1. Unveiling the Origin of Fast Hydride Ion Diffusion at Grain Boundaries in Nanocrystalline TiN Membranes.
    Kunisada Y; Kura C; Sakaguchi N; Zhu C; Habazaki H; Aoki Y
    ACS Omega; 2024 Mar; 9(12):13738-13745. PubMed ID: 38559931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems.
    van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA
    J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Densification Kinetics and Structural Evolution During Microwave and Pressureless Sintering of 15 nm Titanium Nitride Powder.
    Zgalat-Lozynskyy O; Ragulya A
    Nanoscale Res Lett; 2016 Dec; 11(1):99. PubMed ID: 26909779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the Electronic Structure of Grain Boundaries in Anatase with Electron Microscopy and First-Principles Modeling.
    Quirk JA; Miao B; Feng B; Kim G; Ohta H; Ikuhara Y; McKenna KP
    Nano Lett; 2021 Nov; 21(21):9217-9223. PubMed ID: 34724619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide.
    Shukla S; Seal S
    J Nanosci Nanotechnol; 2004; 4(1-2):141-5. PubMed ID: 15112557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain Boundary Segregation in Pd-Cu-Ag Alloys for High Permeability Hydrogen Separation Membranes.
    Løvvik OM; Zhao D; Li Y; Bredesen R; Peters T
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30213115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of fast oxide ion diffusion along grain boundaries in Sr-doped LaMnO
    Polfus JM; Yildiz B; Tuller HL
    Phys Chem Chem Phys; 2018 Jul; 20(28):19142-19150. PubMed ID: 29975388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of hydrogen configurations at the core of a high-angle grain boundary in cubic yttria-stabilized zirconia.
    Marinopoulos AG
    J Phys Condens Matter; 2014 Jan; 26(2):025502. PubMed ID: 24305678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palladium Membrane with High Density of Large-Angle Grain Boundaries to Promote Hydrogen Diffusivity.
    Hadjixenophontos E; Mahmoudizadeh M; Rubin M; Ullmer D; Razmjooei F; Hanf AC; Brien J; Dittmeyer R; Ansar A
    Membranes (Basel); 2022 Jun; 12(6):. PubMed ID: 35736325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is Hydrogen Diffusion along Grain Boundaries Fast or Slow? Atomistic Origin and Mechanistic Modeling.
    Zhou X; Mousseau N; Song J
    Phys Rev Lett; 2019 May; 122(21):215501. PubMed ID: 31283335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of Diffusion and Incorporation of Interstitial Oxygen Ions at the TiN/SiO
    Cottom J; Bochkarev A; Olsson E; Patel K; Munde M; Spitaler J; Popov MN; Bosman M; Shluger AL
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36232-36243. PubMed ID: 31532611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten.
    Cunningham WS; Gentile JM; El-Atwani O; Taylor CN; Efe M; Maloy SA; Trelewicz JR
    Sci Rep; 2018 Feb; 8(1):2897. PubMed ID: 29440652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of [110] tilt grain boundaries in zirconia bicrystals.
    Shibata N; Yamamoto T; Ikuhara Y; Sakuma T
    J Electron Microsc (Tokyo); 2001; 50(6):429-33. PubMed ID: 11918406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.
    Seyring M; Song X; Rettenmayr M
    ACS Nano; 2011 Apr; 5(4):2580-6. PubMed ID: 21375327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Softening due to disordered grain boundaries in nanocrystalline Co.
    Yuasa M; Hakamada M; Nakano H; Mabuchi M; Chino Y
    J Phys Condens Matter; 2013 Aug; 25(34):345702. PubMed ID: 23896760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry.
    Molnár GY; Shenouda SS; Katona GL; Langer GA; Beke DL
    Beilstein J Nanotechnol; 2016; 7():474-83. PubMed ID: 27335738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr).
    Zhou X; Yu XX; Kaub T; Martens RL; Thompson GB
    Sci Rep; 2016 Oct; 6():34642. PubMed ID: 27708360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing Grain Boundary Effects on Mg
    Wang Y; Luo T; Elander B; Mu Y; Wang D; Mohanty U; Bao JL
    ACS Appl Mater Interfaces; 2023 May; 15(17):21659-21678. PubMed ID: 37083214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.