These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38560163)

  • 1. Cathode active materials using rare metals recovered from waste lithium-ion batteries: A review.
    Abe Y; Watanabe R; Yodose T; Kumagai S
    Heliyon; 2024 Apr; 10(7):e28145. PubMed ID: 38560163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of lithium-ion batteries' supply-chain in Europe: Material flow analysis and environmental assessment.
    Bruno M; Fiore S
    J Environ Manage; 2024 May; 358():120758. PubMed ID: 38593735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability.
    Wu X; Liu Y; Wang J; Tan Y; Liang Z; Zhou G
    Adv Mater; 2024 May; ():e2403818. PubMed ID: 38794816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling.
    Bhattacharyya S; Roy S; Vajtai R
    Small; 2024 Jun; ():e2400557. PubMed ID: 38922789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material.
    Pakostova E; Graves J; Latvyte E; Maddalena G; Horsfall L
    Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39016549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Phosphate Impurity on Recovered LiNi
    Zheng Y; Azhari L; Meng Z; Gao G; Han Y; Yang Z; Wang Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48627-48635. PubMed ID: 36260417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials.
    Qu G; Yang J; Wang H; Ran Y; Li B; Wei Y
    Waste Manag; 2023 Jul; 166():222-232. PubMed ID: 37196388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives.
    Hantanasirisakul K; Sawangphruk M
    Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies.
    Windisch-Kern S; Gerold E; Nigl T; Jandric A; Altendorfer M; Rutrecht B; Scherhaufer S; Raupenstrauch H; Pomberger R; Antrekowitsch H; Part F
    Waste Manag; 2022 Feb; 138():125-139. PubMed ID: 34875455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself.
    Peng C; Liu F; Aji AT; Wilson BP; Lundström M
    Waste Manag; 2019 Jul; 95():604-611. PubMed ID: 31351647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling and Reuse of Spent LIBs: Technological Advances and Future Directions.
    Lv L; Zhou S; Liu C; Sun Y; Zhang J; Bu C; Meng J; Huang Y
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive Role of Fluorine Impurity in Recovered LiNi
    Zheng Y; Zhang R; Vanaphuti P; Liu Y; Yang Z; Wang Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57171-57181. PubMed ID: 34798774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond.
    Larouche F; Tedjar F; Amouzegar K; Houlachi G; Bouchard P; Demopoulos GP; Zaghib K
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.