These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38560163)

  • 21. Preparation of single-crystal ternary cathode materials
    Huang C; Xia X; Chi Z; Yang Z; Huang H; Chen Z; Tang W; Wu G; Chen H; Zhang W
    Nanoscale; 2022 Jul; 14(27):9724-9735. PubMed ID: 35762909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enabling Future Closed-Loop Recycling of Spent Lithium-Ion Batteries: Direct Cathode Regeneration.
    Yang T; Luo D; Yu A; Chen Z
    Adv Mater; 2023 Sep; 35(36):e2203218. PubMed ID: 37015003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An overview of global power lithium-ion batteries and associated critical metal recycling.
    Miao Y; Liu L; Zhang Y; Tan Q; Li J
    J Hazard Mater; 2022 Mar; 425():127900. PubMed ID: 34896721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective recovery of metals in spent batteries by electrochemical precipitation to cathode material for sodium-ion batteries.
    Zhang X; Yang S; Deng C; Liu W; Xiang D; Liang L; Lai F; Pan K
    Heliyon; 2024 Mar; 10(5):e27127. PubMed ID: 38439833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling of LiNi
    Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z
    Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries.
    Tao Y; Rahn CD; Archer LA; You F
    Sci Adv; 2021 Nov; 7(45):eabi7633. PubMed ID: 34739316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal.
    Wang M; Liu K; Yu J; Zhang Q; Zhang Y; Valix M; Tsang DCW
    Glob Chall; 2023 Mar; 7(3):2200237. PubMed ID: 36910467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A process using a thermal reduction for producing the battery grade lithium hydroxide from wasted black powder generated by cathode active materials manufacturing.
    Park JS; Seo S; Han K; Lee S; Kim MJ
    J Hazard Mater; 2023 Apr; 448():130952. PubMed ID: 36860038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes.
    Li Y; Sun M; Cao Y; Yu K; Fan Z; Cao Y
    ChemSusChem; 2024 Jul; 17(13):e202301953. PubMed ID: 38409620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaching of valuable metals from cathode active materials in spent lithium-ion batteries by levulinic acid and biological approaches.
    Jiang T; Shi Q; Wei Z; Shah K; Efstathiadis H; Meng X; Liang Y
    Heliyon; 2023 May; 9(5):e15788. PubMed ID: 37180931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.
    Yang Y; Xu S; He Y
    Waste Manag; 2017 Jun; 64():219-227. PubMed ID: 28336333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Residual Trace Amounts of Fe and Al in Li[Ni
    Jeong S; Park S; Beak M; Park J; Sohn JS; Kwon K
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34068697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.