These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 38560281)
1. Benchmarking feature selection and feature extraction methods to improve the performances of machine-learning algorithms for patient classification using metabolomics biomedical data. Labory J; Njomgue-Fotso E; Bottini S Comput Struct Biotechnol J; 2024 Dec; 23():1274-1287. PubMed ID: 38560281 [TBL] [Abstract][Full Text] [Related]
2. Multi-agent Feature Selection for Integrative Multi-omics Analysis. Tabakhi S; Lu H Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1638-1642. PubMed ID: 36086594 [TBL] [Abstract][Full Text] [Related]
3. Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer. Bhadra T; Mallik S; Hasan N; Zhao Z BMC Bioinformatics; 2022 Apr; 23(Suppl 3):153. PubMed ID: 35484501 [TBL] [Abstract][Full Text] [Related]
4. Supervised Relevance-Redundancy assessments for feature selection in omics-based classification scenarios. Cascianelli S; Galzerano A; Masseroli M J Biomed Inform; 2023 Aug; 144():104457. PubMed ID: 37488024 [TBL] [Abstract][Full Text] [Related]
5. Supervised Parametric Learning in the Identification of Composite Biomarker Signatures of Type 1 Diabetes in Integrated Parallel Multi-Omics Datasets. Bonnell J; Alcazar O; Watts B; Buchwald P; Abdulreda MH; Ogihara M Biomedicines; 2024 Feb; 12(3):. PubMed ID: 38540105 [TBL] [Abstract][Full Text] [Related]
6. -Omics biomarker identification pipeline for translational medicine. Bravo-Merodio L; Williams JA; Gkoutos GV; Acharjee A J Transl Med; 2019 May; 17(1):155. PubMed ID: 31088492 [TBL] [Abstract][Full Text] [Related]
7. A benchmark study of deep learning-based multi-omics data fusion methods for cancer. Leng D; Zheng L; Wen Y; Zhang Y; Wu L; Wang J; Wang M; Zhang Z; He S; Bo X Genome Biol; 2022 Aug; 23(1):171. PubMed ID: 35945544 [TBL] [Abstract][Full Text] [Related]
8. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
9. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis. Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y Front Genet; 2022; 13():806842. PubMed ID: 35186034 [TBL] [Abstract][Full Text] [Related]
10. ShinyLearner: A containerized benchmarking tool for machine-learning classification of tabular data. Piccolo SR; Lee TJ; Suh E; Hill K Gigascience; 2020 Apr; 9(4):. PubMed ID: 32249316 [TBL] [Abstract][Full Text] [Related]
11. Blood-based transcriptomic signature panel identification for cancer diagnosis: benchmarking of feature extraction methods. Vijayan A; Fatima S; Sowmya A; Vafaee F Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945147 [TBL] [Abstract][Full Text] [Related]
12. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks. Choi JM; Chae H BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124 [TBL] [Abstract][Full Text] [Related]
13. Architectures and accuracy of artificial neural network for disease classification from omics data. Yu H; Samuels DC; Zhao YY; Guo Y BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569 [TBL] [Abstract][Full Text] [Related]
14. Benchmark study of feature selection strategies for multi-omics data. Li Y; Mansmann U; Du S; Hornung R BMC Bioinformatics; 2022 Oct; 23(1):412. PubMed ID: 36199022 [TBL] [Abstract][Full Text] [Related]
15. Deep centroid: a general deep cascade classifier for biomedical omics data classification. Xie K; Hou Y; Zhou X Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38305432 [TBL] [Abstract][Full Text] [Related]
17. Features Selection and Extraction in Statistical Analysis of Proteomics Datasets. Lualdi M; Fasano M Methods Mol Biol; 2021; 2361():143-159. PubMed ID: 34236660 [TBL] [Abstract][Full Text] [Related]
18. A random forest based biomarker discovery and power analysis framework for diagnostics research. Acharjee A; Larkman J; Xu Y; Cardoso VR; Gkoutos GV BMC Med Genomics; 2020 Nov; 13(1):178. PubMed ID: 33228632 [TBL] [Abstract][Full Text] [Related]
19. An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders. Álvarez JD; Matias-Guiu JA; Cabrera-Martín MN; Risco-Martín JL; Ayala JL BMC Bioinformatics; 2019 Oct; 20(1):491. PubMed ID: 31601182 [TBL] [Abstract][Full Text] [Related]