These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38560670)

  • 1. Modeling of Schottky diode and optimal matching circuit design for low power RF energy harvesting.
    Reddaf A; Boudjerda M; Bouchachi I; Babes B; Elrashidi A; AboRas KM; Ali E; Ghoneim SSM; Elsisi M
    Heliyon; 2024 Mar; 10(6):e27792. PubMed ID: 38560670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiband Microstrip Rectenna Using ZnO-Based Planar Schottky Diode for RF Energy Harvesting Applications.
    Kayed SI; Elsheakh DN; Mohamed HA; Shawkey HA
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications.
    Lee W; Choi SI; Kim HI; Hwang S; Jeon S; Yoon YK
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Compact Circular Rectenna for RF-Energy Harvesting at ISM Band.
    Prashad L; Mohanta HC; Mohamed HG
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications.
    Boursianis AD; Papadopoulou MS; Koulouridis S; Rocca P; Georgiadis A; Tentzeris MM; Goudos SK
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting.
    Abdulwali ZSA; Alqahtani AH; Aladadi YT; Alkanhal MAS; Al-Moliki YM; Aljaloud K; Alresheedi MT
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Broad Dual-Band Implantable Antenna for RF Energy Harvesting and Data Transmitting.
    Fan Y; Liu X; Xu C
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Broadband RF Differential Rectifier Integrated with Archimedean Spiral Antenna for Wireless Energy Harvesting Applications.
    Mansour M; Le Polozec X; Kanaya H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30764579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Miniaturized UHF-Band Rectenna for Power Transmission to Deep-Body Implantable Devices.
    Abdi A; Aliakbarian H
    IEEE J Transl Eng Health Med; 2019; 7():1900311. PubMed ID: 31236319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dual-Polarized Omnidirectional Rectenna Array for RF Energy Harvesting.
    Wang Y; Lu N; Sun H; Ren R
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting.
    Assimonis SD; Fusco V; Georgiadis A; Samaras T
    Sci Rep; 2018 Oct; 8(1):15038. PubMed ID: 30301980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radio frequency energy harvesting from a feeding source in a passive deep brain stimulation device for murine preclinical research.
    Hosain MK; Kouzani AZ; Tye SJ; Samad MF; Kale RP; Bennet KE; Manciu FS; Berk M
    Med Eng Phys; 2015 Oct; 37(10):1020-6. PubMed ID: 26318799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless power transfer system for deep-implanted biomedical devices.
    Iqbal A; Sura PR; Al-Hasan M; Mabrouk IB; Denidni TA
    Sci Rep; 2022 Aug; 12(1):13689. PubMed ID: 35953546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas.
    Gasulla M; Jordana J; Robert FJ; Berenguer J
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28757592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rectenna System Development Using Harmonic Balance and S-Parameters for an RF Energy Harvester.
    Md Jamil MNB; Omar M; Ibrahim R; Bingi K; Faqih M
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quad-Band Rectenna for Ambient Radio Frequency (RF) Energy Harvesting.
    Roy S; Tiang JJ; Roslee MB; Ahmed MT; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of 2400-2450 MHz Frequency Band RF Energy Harvesting System for Low-Power Device Operation.
    Khan NU; Ullah S; Khan FU; Merla A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Circularly Polarized Implantable Rectenna for Microwave Wireless Power Transfer.
    Xu C; Fan Y; Liu X
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and performance analysis of a rectenna system for charging a mobile phone from ambient EM waves.
    Kar PC; Islam MA
    Heliyon; 2023 Mar; 9(3):e13964. PubMed ID: 36873516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.
    Hashim AM; Mustafa F; Rahman SF; Rahman AR
    Sensors (Basel); 2011; 11(8):8127-42. PubMed ID: 22164066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.