BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38560671)

  • 1. EEG and EMG-based human-machine interface for navigation of mobility-related assistive wheelchair (MRA-W).
    Welihinda DVDS; Gunarathne LKP; Herath HMKKMB; Yasakethu SLP; Madusanka N; Lee BI
    Heliyon; 2024 Mar; 10(6):e27777. PubMed ID: 38560671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-machine interfaces based on EMG and EEG applied to robotic systems.
    Ferreira A; Celeste WC; Cheein FA; Bastos-Filho TF; Sarcinelli-Filho M; Carelli R
    J Neuroeng Rehabil; 2008 Mar; 5():10. PubMed ID: 18366775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric powered wheelchair control using user-independent classification methods based on surface electromyography signals.
    Iqbal H; Zheng J; Chai R; Chandrasekaran S
    Med Biol Eng Comput; 2024 Jan; 62(1):167-182. PubMed ID: 37749368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review.
    Kaur A
    J Med Eng Technol; 2021 Jan; 45(1):61-74. PubMed ID: 33302770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steering a tractor by means of an EMG-based human-machine interface.
    Gomez-Gil J; San-Jose-Gonzalez I; Nicolas-Alonso LF; Alonso-Garcia S
    Sensors (Basel); 2011; 11(7):7110-26. PubMed ID: 22164006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geospatial assistive technologies for wheelchair users: a scoping review of usability measures and criteria for mobile user interfaces and their potential applicability.
    Prémont MÉ; Vincent C; Mostafavi MA; Routhier F
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):119-131. PubMed ID: 30663444
    [No Abstract]   [Full Text] [Related]  

  • 9. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geospatial assistive technologies: potential usability criteria identified from manual wheelchair users.
    Prémont MÉ; Vincent C; Mostafavi MA
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):844-855. PubMed ID: 31226889
    [No Abstract]   [Full Text] [Related]  

  • 11. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
    Toma TI; Choi S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigation-synchronized multimodal control wheelchair from brain to alternative assistive technologies for persons with severe disabilities.
    Puanhvuan D; Khemmachotikun S; Wechakarn P; Wijarn B; Wongsawat Y
    Cogn Neurodyn; 2017 Apr; 11(2):117-134. PubMed ID: 28348644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and development of solar power-assisted manual/electric wheelchair.
    Chien CS; Huang TY; Liao TY; Kuo TY; Lee TM
    J Rehabil Res Dev; 2014; 51(9):1411-25. PubMed ID: 25785910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair.
    Saichoo T; Boonbrahm P; Punsawad Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating surface EMG control of motorized wheelchairs for amyotrophic lateral sclerosis patients.
    Manero AC; McLinden SL; Sparkman J; Oskarsson B
    J Neuroeng Rehabil; 2022 Aug; 19(1):88. PubMed ID: 35965311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers.
    Tortora S; Tonin L; Chisari C; Micera S; Menegatti E; Artoni F
    Front Neurorobot; 2020; 14():582728. PubMed ID: 33281593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments.
    How TV; Wang RH; Mihailidis A
    J Neuroeng Rehabil; 2013 Aug; 10():90. PubMed ID: 23924489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.