These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38560671)

  • 61. Use of manual and powered wheelchair in children with cerebral palsy: a cross-sectional study.
    Rodby-Bousquet E; Hägglund G
    BMC Pediatr; 2010 Aug; 10():59. PubMed ID: 20712899
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Vision-Based Human-Machine Interface for an Assistive Robotic Exoskeleton Glove.
    Guo Y; Xu W; Ben-Tzvi P
    Res Sq; 2023 Aug; ():. PubMed ID: 37693405
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of a metric to evaluate the ergonomic principles of assistive systems, based on the DIN 92419.
    Xavier Macedo de Azevedo F; Heimgärtner R; Nebe K
    Ergonomics; 2023 Jun; 66(6):821-848. PubMed ID: 36137226
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Wheelchair users' perceptions of a system enabling them to traverse rough terrain controlling their own wheelchair.
    Yuviler-Gavish N; Weiss A; Ben-Hanan U; Madar M
    Appl Ergon; 2023 Jan; 106():103866. PubMed ID: 36049445
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Towards an intelligent wheelchair system for users with cerebral palsy.
    Montesano L; Díaz M; Bhaskar S; Minguez J
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):193-202. PubMed ID: 20071276
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluation of an exercise-enabling control interface for powered wheelchair users: a feasibility study with Duchenne muscular dystrophy.
    Lobo-Prat J; Enkaoua A; Rodríguez-Fernández A; Sharifrazi N; Medina-Cantillo J; Font-Llagunes JM; Torras C; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2020 Oct; 17(1):142. PubMed ID: 33115472
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.
    Huo X; Wang J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4199-202. PubMed ID: 19163638
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design and Evaluation of the Kinect-Wheelchair Interface Controlled (KWIC) Smart Wheelchair for Pediatric Powered Mobility Training.
    Zondervan DK; Secoli R; Darling AM; Farris J; Furumasu J; Reinkensmeyer DJ
    Assist Technol; 2015; 27(3):183-92. PubMed ID: 26427746
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair.
    Rojas M; Ponce P; Molina A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4593-4596. PubMed ID: 28269298
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Understanding route choices for wheelchair navigation.
    Kasemsuppakorn P; Karimi HA; Ding D; Ojeda MA
    Disabil Rehabil Assist Technol; 2015 May; 10(3):198-210. PubMed ID: 24649869
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Feature determination from powered wheelchair user joystick input characteristics for adapting driving assistance.
    Gillham M; Pepper M; Kelly S; Howells G
    Wellcome Open Res; 2017; 2():93. PubMed ID: 29552641
    [No Abstract]   [Full Text] [Related]  

  • 74. Evaluation of the Nino® Two-Wheeled Power Mobility Device: A Pilot Study.
    Mattie J; Tavares J; Matheson B; Smith E; Denison I; Miller WC; Borisoff JF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2497-2506. PubMed ID: 33006931
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Towards BCI-actuated smart wheelchair system.
    Tang J; Liu Y; Hu D; Zhou Z
    Biomed Eng Online; 2018 Aug; 17(1):111. PubMed ID: 30126416
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ultrasonic Tethering to Enable Side-by-Side Following for Powered Wheelchairs.
    Pingali TR; Lemaire ED; Baddour N
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30598029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An asynchronous wheelchair control by hybrid EEG-EOG brain-computer interface.
    Wang H; Li Y; Long J; Yu T; Gu Z
    Cogn Neurodyn; 2014 Oct; 8(5):399-409. PubMed ID: 25206933
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries.
    Huang Q; Chen Y; Zhang Z; He S; Zhang R; Liu J; Zhang Y; Shao M; Li Y
    J Neural Eng; 2019 Apr; 16(2):026021. PubMed ID: 30620927
    [TBL] [Abstract][Full Text] [Related]  

  • 79. How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Imagery.
    Kocejko T; Matuszkiewicz N; Durawa P; Madajczak A; Kwiatkowski J
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339635
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Special considerations in the selection of the certified rehabilitation supplier.
    Edlich RF; Winters KL; Long WB
    J Long Term Eff Med Implants; 2004; 14(6):513-9. PubMed ID: 15698377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.