BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38560737)

  • 21. Single threshold adaptive deep brain stimulation in Parkinson's disease depends on parameter selection, movement state and controllability of subthalamic beta activity.
    Busch JL; Kaplan J; Habets JGV; Feldmann LK; Roediger J; Köhler RM; Merk T; Faust K; Schneider GH; Bergman H; Neumann WJ; Kühn AA
    Brain Stimul; 2024; 17(1):125-133. PubMed ID: 38266773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease.
    Radcliffe EM; Baumgartner AJ; Kern DS; Al Borno M; Ojemann S; Kramer DR; Thompson JA
    J Neurophysiol; 2023 Jun; 129(6):1492-1504. PubMed ID: 37198135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noise-Induced Improvement of the Parkinsonian State: A Computational Study.
    Liu C; Wang J; Deng B; Li H; Fietkiewicz C; Loparo KA
    IEEE Trans Cybern; 2019 Oct; 49(10):3655-3664. PubMed ID: 29994689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of DBS patterns on basal ganglia activity and thalamic relay : a computational study.
    Agarwal R; Sarma SV
    J Comput Neurosci; 2012 Aug; 33(1):151-67. PubMed ID: 22237601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formal Verification of Deep Brain Stimulation Controllers for Parkinson's Disease Treatment.
    Nawaz A; Hasan O; Jabeen S
    Neural Comput; 2023 Mar; 35(4):671-698. PubMed ID: 36827600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep brain stimulation with short versus conventional pulse width in Parkinson's disease and essential tremor: A systematic review and meta-analysis.
    Smeets S; Boogers A; Van Bogaert T; Peeters J; McLaughlin M; Nuttin B; Theys T; Vandenberghe W; De Vloo P
    Brain Stimul; 2024; 17(1):71-82. PubMed ID: 38160999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unraveling the complexities of programming neural adaptive deep brain stimulation in Parkinson's disease.
    Wilkins KB; Melbourne JA; Akella P; Bronte-Stewart HM
    Front Hum Neurosci; 2023; 17():1310393. PubMed ID: 38094147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Closed-Loop Adaptive Deep Brain Stimulation in Parkinson's Disease: Procedures to Achieve It and Future Perspectives.
    Wang S; Zhu G; Shi L; Zhang C; Wu B; Yang A; Meng F; Jiang Y; Zhang J
    J Parkinsons Dis; 2023; 13(4):453-471. PubMed ID: 37182899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward adaptive deep brain stimulation for dystonia.
    Piña-Fuentes D; Beudel M; Little S; van Zijl J; Elting JW; Oterdoom DLM; van Egmond ME; van Dijk JMC; Tijssen MAJ
    Neurosurg Focus; 2018 Aug; 45(2):E3. PubMed ID: 30064317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pallidal Deep-Brain Stimulation Disrupts Pallidal Beta Oscillations and Coherence with Primary Motor Cortex in Parkinson's Disease.
    Wang DD; de Hemptinne C; Miocinovic S; Ostrem JL; Galifianakis NB; San Luciano M; Starr PA
    J Neurosci; 2018 May; 38(19):4556-4568. PubMed ID: 29661966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease.
    Little S; Beudel M; Zrinzo L; Foltynie T; Limousin P; Hariz M; Neal S; Cheeran B; Cagnan H; Gratwicke J; Aziz TZ; Pogosyan A; Brown P
    J Neurol Neurosurg Psychiatry; 2016 Jul; 87(7):717-21. PubMed ID: 26424898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.
    McConnell GC; So RQ; Hilliard JD; Lopomo P; Grill WM
    J Neurosci; 2012 Nov; 32(45):15657-68. PubMed ID: 23136407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Pilot Study on Data-Driven Adaptive Deep Brain Stimulation in Chronically Implanted Essential Tremor Patients.
    Castaño-Candamil S; Ferleger BI; Haddock A; Cooper SS; Herron J; Ko A; Chizeck HJ; Tangermann M
    Front Hum Neurosci; 2020; 14():541625. PubMed ID: 33250727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring time domain characteristics of Parkinson's disease using 3D memristive neuromorphic system.
    Siddique MAB; Zhang Y; An H
    Front Comput Neurosci; 2023; 17():1274575. PubMed ID: 38162516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subspace-based predictive control of Parkinson's disease: A model-based study.
    Ahmadipour M; Barkhordari-Yazdi M; Seydnejad SR
    Neural Netw; 2021 Oct; 142():680-689. PubMed ID: 34403908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive Brain Stimulation for Movement Disorders.
    Beudel M; Cagnan H; Little S
    Prog Neurol Surg; 2018; 33():230-242. PubMed ID: 29332087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive deep brain stimulation: Retuning Parkinson's disease.
    Pozzi NG; Isaias IU
    Handb Clin Neurol; 2022; 184():273-284. PubMed ID: 35034741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.
    During MJ; Kaplitt MG; Stern MB; Eidelberg D
    Hum Gene Ther; 2001 Aug; 12(12):1589-91. PubMed ID: 11529246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BGRL: Basal Ganglia inspired Reinforcement Learning based framework for deep brain stimulators.
    Agarwal H; Rathore H
    Artif Intell Med; 2024 Jan; 147():102736. PubMed ID: 38184360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive Deep Brain Stimulation: From Experimental Evidence Toward Practical Implementation.
    Neumann WJ; Gilron R; Little S; Tinkhauser G
    Mov Disord; 2023 Jun; 38(6):937-948. PubMed ID: 37148553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.